

AEDC-TR-10-T-36

PA No. AEDC2011-219

2D Mesh Manipulation

James S. Masters
Aerospace Testing Alliance

November 2011

Final Report for Period October 2009 – January 2011

Statement A: Approved for public release; distribution is unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE BASE, TENNESSEE

AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other
than a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Technical Information Center.

References to named commercial products in this report are not to be considered in any sense as
an endorsement of the product by the United States Air Force or the Government.

DESTRUCTION NOTICE
For unclassified, limited documents, destroy by any method
that will prevent disclosure or reconstruction of the document.

APPROVAL STATEMENT

Prepared by:

JAMES S. MASTERS
Aerospace Testing Alliance

Reviewed by:

TERRANCE M. DUBREUS, Ph.D.
AEDC/TTSY

Approved by:

SCOTT W. WALTERMIRE
Technical Director
Test Technology

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to
Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should
be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To)

xx-11-2011 Final Report October 2009 – January 2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
2D Mesh Manipulation

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Masters, James S.
Aerospace Testing Alliance

11808
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NO.

Aerospace Testing Alliance (ATA) AEDC-TR-10-T-36
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Statement A: Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
Available in the Defense Technical Information Center (DTIC).
14. ABSTRACT
Unstructured methods for region discretization have become common in computational fluid dynamics (CFD) analysis
because of certain benefits they have over structured meshes (where the discretization of the domain reflects some type
of consistent geometrical regularity). Unstructured meshes are powerful tools for efficiently defining complex geometries
and also lend themselves to analysis techniques such as adaptive mesh refinement (AMR) where the properties of the
mesh adapt to the properties of the flow that is being analyzed. They also are useful for adapting a mesh to a geometry
that is being optimized to exhibit desired characteristics. As unstructured methods have grown in popularity, mesh
manipulation techniques that have traditionally been reserved for structured meshes have started migrating to the world
of unstructured meshing as well. One such technique is the application of Winslow elliptic smoothing equations to
unstructured meshes. It has been shown that it is not necessary for the computational space of the entire mesh to be
constructed as an overarching system; rather, each node in computational space can be treated as an individual virtual
control volume. This allows Winslow equations to be utilized even if the original physical mesh is of low quality.
Traditional Winslow equations have been shown to be ideal for smoothing nonboundary nodes in inviscid regions but are
of limited use in other situations. Modifications to the implementation of the computational space allow Winslow equations
to be extended so that they can also be applied to boundary nodes and to highly anisotropic viscous regions of
unstructured meshes.
15. Subject Terms
Unstructured mesh, elliptic smoothing, adaptive mesh refinement
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT
18. NUMBER

OF PAGES
19A. NAME OF RESPONSIBLE PERSON

A. REPORT B. ABSTRACT C. THIS PAGE James S. Masters

Unclassified Unclassified Unclassified Same as Report 93
19B. TELEPHONE NUMBER (Include area code)

(931) 454-7739

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 739.18

This page is intentionally left blank.

AEDC-TR-10-T-36

1
Statement A: Approved for public
release; distribution is unlimited.

CONTENTS

Page

1.0 INTRODUCTION ... 5

1.1 Mesh Smoothing and Winslow Equations .. 5

1.2 Extension of Winslow Equations .. 7

1.3 Mesh Refinement and Optimization ... 8

2.0 BACKGROUND ... 9

2.1 Gradients in an Unstructured Mesh .. 9

2.2 Laplace and Poisson’s Equation .. 12

2.2 Laplacian vs. Winslow Smoothing .. 14

3.0 ISOTROPIC WINSLOW SMOOTHING .. 15

3.1 Elliptic Smoothing .. 15

3.2 Virtual Control Volumes ... 16

3.3 Discrete Form of Winslow Equations.. 17

3.4 Isotropic Winslow Equations Applied to Flat Plate .. 21

3.5 Isotropic Winslow Equations Applied to NACA0012 Airfoil 25

4.0 WINSLOW EQUATIONS ON BOUNDARIES .. 27

4.1 Placing Ghost Points .. 29

4.2 Analytically Defined Boundaries ... 33

4.3 Explicitly Defined Boundaries ... 35

4.4 Floating Points on Multiple Boundaries .. 36

4.5 Multiple Element Airfoil... 38

5.0 ELLIPTIC SMOOTHING IN VISCOUS REGIONS ... 44

5.1 Normal Offset ... 45

5.2 Normal and Lateral Offset .. 48

5.3 Viscous NACA0012 Results ... 51

6.0 REFINEMENT ... 59

6.1 Unstructured Element Division ... 59

6.2 Static Refinement... 60

6.3 Dynamic Refinement .. 62

7.0 OPTIMIZATION ... 65

7.1 Cost Function ... 66

7.2 Design Variables and Sensitivity Derivatives .. 67

7.3 Summary of Sensitivity Derivatives .. 73

AEDC-TR-10-T-36

2 Statement A: Approved for public
release; distribution is unlimited.

8.0 CONCLUSIONS .. 74

 REFERENCES .. 77

FIGURES
Figure

1. Structured Mesh in Physical and Computational Space .. 7

2. Unstructured Mesh in Physical and Computational Space .. 7

3. Two-Dimensional Triangular Control Volume with Outward Facing Normals 9

4. Flowfield Generated Using the Velocity Potential Equation ... 13

5. Region Surrounding a Control Volume .. 15

6. Subsection of an Unstructured Mesh .. 17

7. Virtual Control Volumes in Computational Space .. 17

8. Virtual Control Volume for a Valence-Count 4 Node ... 18

9. Control Volume for a Single Valence-4 Node Exploded Into its Individual Triangular
Components ... 19

10. Refined Symmetric Flat Plate Mesh .. 22

11. Results from Applying Winslow Equations to Flat Plate Mesh That has Been Rotated,
Translated, and Warped into a Semi-Circle ... 23

12. Lines of Connectivity Between an Inner Boundary and an Outer Boundary 24

13. Connectivity Path Between Surface and Outer Boundary Before and After Surface
Modification... 25

14. NACA0012 Airfoil Before and After Rotation ... 26

15. NACA0012 Mesh After Winslow Smoothing has Been Performed 26

16. Close-Up of an Isotropic Refined Mesh in the “Fishtail Shock” Region After Six
Refinement Iterations .. 27

17. Interior Node (Node 8) in Physical (Left) and Computational (Right) Space 29

18. Surface Node (Node 5) and Ghost Node (Node 9) in Physical (Left) and Computational
(Right) Space .. 29

19. Effect of Co-Locating Ghost Points with Their Associated Surface Points 30

20. Placement of a Ghost Point .. 31

21. Ghost Point Placement: Reflection vs. Extension .. 32

22. Convergence Comparison for a Mesh Using Extension and Reflection to Place the
Ghost Nodes ... 33

23. Flat Plate Bounded by Flat Boundary Surfaces ... 34

24. Flat Plate Rotated 45 and 90 deg While Boundary Nodes are Held Static....................... 36

AEDC-TR-10-T-36

3
Statement A: Approved for public
release; distribution is unlimited.

25. Flat Plate Rotated 45 and 90 deg While Smoothing is Performed on Outer Boundary
Nodes ... 36

26. Airfoil Mesh Before and After Smoothing .. 37

27. Effect of Projecting Onto the Wrong Surface of a Sharp Airfoil Tail 37

28. Close-Up of Mesh Near Interior Surface at Nose and Tail of Airfoil 38

29. 30P30N Airfoil and Mesh .. 39

30. Close-Up of 30P30N Airfoil ... 40

31. 30P30N Mesh, Without (Left) and With (Right) Floating-Node Outer Boundary............... 40

32. 30P30N Airfoil at 0 deg Angle of Attack .. 41

33. 30P30N Airfoil at 30 deg Angle of Attack .. 41

34. CFD Solution on a 30P30N Airfoil ... 41

35. 30P30N Airfoil with Front (Slat) Section Moved from Extended to Retracted Position 42

36. Original Slat Position ... 43

37. Slat Movement Using Static Surface Nodes .. 43

38. Slat Movement Using Floating-Node Boundary on Central Airfoil Section 43

39. Full Domain of Inviscid Mesh Surrounding Rough Airfoil ... 44

40. Inviscid Mesh Around Rough Airfoil Near Airfoil Surface ... 45

41. Computational Space Offset Normal to Viscous Surface ... 46

42. Mesh Smoothed Using Normal Offset ... 47

43. Rough Airfoil Smoothed Using Normal Offset Computational Space 47

44. Close-Up of Rough Airfoil Smoothed Using Normal Offset Computational Space 48

45. Normal Offset Computational Space Can Result in Large Angles 48

46. Computational Space with Offsets in Both the Normal and Lateral Directions 49

47. Area Representation of Cross Product .. 50

48. Rough Airfoil Mesh Smoothed Using Iteratively Adapted Computational Space in Viscous
Region .. 51

49. Close-Up of Smoothed Viscous Region Near Rough Airfoil Surface 51

50. Inviscid Domain Surrounding NACA0012 Airfoil .. 52

51. NACA0012 Airfoil Before and After Smoothing ... 52

52. Close-Up of NACA0012 Airfoil Before and After Smoothing .. 53

53. NACA0012 Rotation Using Winslow Iteratively Adaptive Computational
Space Algorithm.. 53

54. NACA0012 Translation Using Winslow Iteratively Adaptive Computational Space
Algorithm .. 54

55. NACA0012 Rotation and Translation Using Winslow Iteratively Adaptive Computational
Space Algorithm.. 54

AEDC-TR-10-T-36

4 Statement A: Approved for public
release; distribution is unlimited.

56. Viscous Mesh Conforming to a Deforming Surface ... 56

57. Mesh with Off-Body Spacing of s = 0.01 (y+ = 100, Re = 20,000) 57

58. Mesh with Off-Body Spacing of s = 0.00233 (y+ = 100, Re = 100,000) 58

59. NACA0012 Mesh Comparison at Varying Reynolds Numbers .. 58

60. 8 (23) Ways to Mark a Triangle .. 60

61. 11 Possible Ways to Split a Triangular Element .. 60

62. Flowfield Around a NACA0012 Airfoil at Mach 0.95 Along with the Initial
Unrefined Mesh... 61

63. Progression of Grid Refinement/Derefinement .. 62

64. NACA0012 Airfoil at 0 deg Angle of Attack and at 10 deg Angle of Attack 63

65. Grid Adaptation on Rotated Airfoil ... 63

66. NACA0012 Refinement with Varying Pitch .. 64

67. One Variable Example of a Function and Its Derivative... 66

68. Magnitude of Mesh Sensitivities .. 71

APPENDICES

Appendix

A. Metric Relationships and the Jacobian ... 79

B. Derivation of Winslow Equations ... 83

 NOMENCLATURE .. 91

AEDC-TR-10-T-36

5
Statement A: Approved for public
release; distribution is unlimited.

1.0 INTRODUCTION

In any engineering field it is important to have the ability to break up a given system into
manageable parts in order to explore and investigate the interesting and dynamic aspects of the
system. This is true for the study of thermodynamic systems or for the use of finite-element
analysis to study static and dynamic properties of parts and facilities. It is also true within the
field of fluid mechanics and especially the subdiscipline of computational fluid dynamics (CFD).

The analysis of aerodynamic systems is often broken down into three separate but
complimentary categories: flight-test, ground-test (wind tunnel testing), and CFD. CFD deals
directly with applying the laws of conservation (mass, momentum, and energy) to an
aerodynamic system. It relies on a logical and effective breakup of the system of interest in
order to properly apply the conservative laws of fluid dynamics to the system in a way that
properly captures the necessary physics to realistically define the system.

Mesh generation is the discipline that explores and analyzes the breakup (known as
discretization) of a system into finite discrete segments so that the characteristics of the
overarching system can be explored using the Navier-Stokes equations (or, in the case of
inviscid flow, the Euler equations). This system of equations – named after the Frenchman
Claude-Louis Navier and the Englishman Gabriel Stokes – are a system of partial differential
equations. Analytical solutions to partial differential equations involve closed-form expressions
which give the variation of the dependent variables continuously throughout a domain (Ref.1)[1].
However, to analyze a physical system computationally, both the defining equations and the
domain must be discretized. Discretization of the equations is accomplished by replacing the
original system of partial differential equations with a system of algebraic equations that can be
solved to calculate the values of the flowfield variables (pressure, temperature, velocity, etc.) at
discrete points (often referred to as grid points, mesh points, or nodes). Depending on the way
the equations are discretized, a finite difference or finite volume numerical solution is obtained.
In contrast to differential equations, numerical solutions generally give answers only at discrete
points in the domain; effectively generating these discrete grid point locations is at the heart of
mesh generation and manipulation.

There are many ways that a region where the flow is to be analyzed might be discretized.
Traditionally, the region has been discretized using structured meshes, where the discretization
of the domain reflects some type of consistent geometrical regularity. However, because of their
flexibility with capturing real-world geometry, unstructured meshes (where mesh points are
placed in the flowfield in a very irregular fashion) are being utilized more frequently (Ref. 1). As
computational power and storage increase and as unstructured meshes become better
understood and handled with increasing skill, mesh manipulation techniques that have in the
past been reserved for structured meshes are migrating to the world of unstructured meshing as
well. One such technique is the application of Winslow elliptic smoothing equations to a mesh.

1.1 MESH SMOOTHING AND WINSLOW EQUATIONS

The Winslow elliptic smoothing equations, first proposed by Alan Winslow in 1967 (Ref. 2), are
derived from Poisson’s Equation (or Laplace’s Equation for the homogeneous case) for a
parameter distribution over a region. In structured meshing there is an implicit computational
space that lends itself well to the application of the Winslow equations. However, no such
implicit computational space exists for unstructured meshes, and the computational space must,
therefore, be explicitly defined. It can be shown that a computational space can be constructed
using the initial discretized physical space. This works well for many applications and often

AEDC-TR-10-T-36

6 Statement A: Approved for public
release; distribution is unlimited.

provides a well-defined connectivity and spatial definition for a mesh that is applicable even if
the geometry that defined the mesh was then allowed to move. However, this also creates the
requirement that a valid initial mesh exists. This is not always the case; an initial unstructured
mesh might not exist and, if one does exist, it is possible that there might exist sections in the
mesh that are invalid due to mesh crossing, negative volumes, or other problems. Using the
original mesh as the computational space is also problematic if there is a requirement that
certain mesh characteristics (such as viscous spacing) need to be varied.

It is apparent that there are significant limitations with using the original mesh as the
computational space, but a mathematically expedient way of defining a general overarching
unstructured computational space has proven elusive. Because the unstructured mesh
connectivity needs to be explicitly defined and the valence count (the number of connected
nodes or neighbors) varies throughout the domain, no theory currently exists to generate a
global computational space that reflects a consistent geometric regularity as was done with
structured meshes. Many difficulties that were due to the lack of a global unstructured
computational space were alleviated when it was shown that it was not necessary for the entire
computational mesh to be constructed as an overarching system of nodes and elements and
that each node in computational space could be isolated from the overarching system as a
virtual control volume and coupled only though the coordinates in physical space, which are
treated as free variables (Refs. 3 and 4). These virtual control volumes can be constructed with
ideal shapes and uniform quality.

A physical region is discretized using structured meshes by breaking up the region into
quadrilaterals (quads) in two dimensions and hexahedra (hexes) in three dimensions. The
simplest way to discretize a physical region using unstructured meshes is to break up the region
into triangles in two dimensions and tetrahedra (tets) in three dimensions. There are many other
ways to discretize a region using unstructured meshes, but this document will only address the
simplex geometry elements. Examples of a simple two-dimensional region that has been
discretized using both structured and unstructured methodologies, as well as the corresponding
computational spaces, are shown in Figs. 1 and 2. The convention used within this document is
that physical space is generally displayed with a red mesh while computational space is
generally displayed with a black or gray mesh; this convention is illustrated in Figs. 1 and 2.
Additional information concerning grid metrics, which describe the relationship (or mapping)
between physical and computational space, is assembled in Appendix A.

When applied to an unstructured mesh, the Winslow elliptic smoothing equations allow mesh
points to be moved and smoothed to conform to a moving (or nonmoving) surface. The Winslow
equations deal with derivatives of physical space (x,y) with respect to computational space ().
A detailed derivation of the Winslow equations is demonstrated in Appendix B, and it is
interesting to note how much more complex the equations become when they are transformed
from the relatively simple form with respect to coordinates in physical space compared to the
form where the derivatives are with respect to the computational coordinates.

In Fig. 2 the nodes, which correspond to the four nodes shown as black dots in physical space,
are broken off from the overarching system and are coupled only through the coordinates in
physical space. Each node will have a unique computational space similar to the ones shown in
the figure. Note that the computational space for a boundary node does not have a complete
neighbor-node stencil.

AEDC-TR-10-T-36

7
Statement A: Approved for public
release; distribution is unlimited.

Figure 1. Structured Mesh in Physical and Computational Space

Figure 2. Unstructured Mesh in Physical and Computational Space

1.2 EXTENSION OF WINSLOW EQUATIONS

For an unstructured mesh, the central node in each of the individual virtual control volumes in
computational space is surrounded by neighboring nodes using equal angles and equal edge-
lengths, and it is necessary that the central node be fully surrounded by neighboring nodes for
the computational stencil to be complete. (A note on terminology: the node-of-interest – i.e., the
node being smoothed at a given instant – will often be referred to in this document as the
central node and is always located at the origin in computational space.) The characteristics of
the Winslow equations implemented using this method make them ideal for smoothing inviscid
mesh elements in the interior region of a mesh because the equations drive the mesh elements
to display an isotropic behavior; that is, the triangular mesh elements in physical space will all
become as close to equilateral as possible within the constraints of the overall system.

The need for a complete computational neighbor-node stencil and the tendency to drive mesh
elements to exhibit isotropic behavior, however, makes the conventional Winslow methodology
unsuitable to two situations that are common in fluid mechanics (Ref. 5). The first situation is
where the nodes on the boundaries need to move to accommodate the movement of the interior
nodes. Often, keeping the boundary nodes static while interior nodes move will result in mesh
elements that exhibit a sufficient amount of skew to cause the numerical solutions generated on
the mesh to become unstable or unreliable. The second situation is one where the viscous
properties of the flow are important. In the viscous boundary-layer region, the flowfield variables
are changing very rapidly normal to the surface, but much more mildly in the direction parallel to
the surface. In order to capture the viscous boundary layer in an efficient manner, it is

AEDC-TR-10-T-36

8 Statement A: Approved for public
release; distribution is unlimited.

necessary that the mesh elements near the viscous surface have high aspect ratios. Otherwise,
the resolution required to capture the gradients in the normal direction will result in a potentially
prohibitive number of grid points.

These two common situations are addressed in detail in this report in Sections 6 and 7. A
methodology is presented and described that will make it possible to apply the Winslow elliptic
smoothing equations to a node on a boundary. Implementation of this methodology allows the
boundary nodes to float and greatly improve the mesh in certain situations. Several examples
are shown that illustrate the benefit of implementing the Winslow equations such that the
surface nodes are allowed to float. A methodology is also presented that allows the Winslow
equations to be applied to viscous regions of a mesh, where it is required that the mesh be
highly anisotropic. Examples of this implementation are illustrated as well.

1.3 MESH REFINEMENT AND OPTIMIZATION

Two areas where the Winslow equations can be used in conjunction with other analysis
techniques are adaptive mesh refinement (AMR) and optimization. AMR is employed with the
purpose of reducing the computational cost of generating a flow solution while maintaining a
given level of accuracy for the solution. In a finite-element context, adaptive mesh refinement is
generally classified into three categories: h-refinement (enrichment), r-refinement (movement),
and p-refinement (reconnection).

H-refinement schemes often use an error estimator to determine regions of the grid where the
solution is underresolved and add elements locally to improve the resolution. This is done with
the intent of improving the accuracy of the solution. While h-refinement schemes have
demonstrated the ability to improve solution accuracy through local refinement, there is added
overhead due to the increased number of mesh elements (Ref. 6). The p-refinement approach
increases the element order by increasing the degree of the piecewise polynomials over the
triangular mesh elements. The r-refinement approach involves the redistribution of points. R-
refinement involves moving the nodes of the mesh while maintaining the cell connectivity and
the size of the mesh (Ref. 7).

R-refinement is the category that includes mesh smoothing. Conceptually, r-refinement is
relatively straightforward, but it can produce highly skewed cells and prohibitively small (or
negative) cell volumes if not performed correctly. AMR generally refers to adapting a mesh to a
particular flow solution but herein deals also with adapting a mesh to changes in geometry.

Design optimization may be performed to improve the performance of a given design operating
under a certain set of conditions. An efficient way to perform a design optimization on a 2D
mesh is to couple an optimization code with a 2D CFD solver and a mesh movement/refinement
code. The concept of optimization is based on finding a minimum of some function. A design
reaching an optimum state implies that the function for which the optimization has been
performed has been minimized and the derivates of the function are zero. By employing
sensitivity derivatives based on the impact of a given set of design variables, a design can be
optimized to better perform a particular mission. A mesh manipulation method may be used to
manipulate the geometry to minimize the function or modify the volume grid to improve the
accuracy of the solution.

AEDC-TR-10-T-36

9
Statement A: Approved for public
release; distribution is unlimited.

2.0 BACKGROUND

The gradient in an unstructured element is derived by manipulating the Divergence Theorem
(often alternately referred to as the Gauss Divergence Theorem or, in 2D, as Green’s Theorem).
The Divergence Theorem states that if there is a solid region (i.e., a control volume) whose
boundary surface has positive orientation (outward facing surface normals, n) and F is a vector
field whose component functions have continuous partial derivatives on an open region
containing the control volume (Ref. 8), then:

 F dV F ndS    (2.1)

2.1 GRADIENTS IN AN UNSTRUCTURED MESH

Equation (2.1) is the Divergence Theorem for a three-dimensional (3D) control volume. In two
dimensions, the Divergence Theorem can be simplified to Eq. (2.2).

 F dA F ndS    (2.2)

The control volume in 2D is effectively a “control area” but will continue to be referred to as a
control volume herein. Consider a 2D domain broken up into an unstructured mesh comprised
of triangles similar to the one shown below in Fig. 3. Each triangle becomes a control volume,
and the gradient within the control volume (which is treated as constant throughout the control
volume and discontinuous at the surface of the control volume) can be found by manipulating
the Divergence Theorem. Note that because the gradient is constant within the control volume,
the mesh must be refined into smaller control volumes if a more precise gradient is desired in a
given region.

Figure 3. Two-Dimensional Triangular Control Volume with Outward Facing Normals

A generic scalar function (denoted as ) is used to illustrate the process for calculating the
gradient in a triangular control volume. Any scalar function that is continuous in the region can
be calculated using the following methodology. The gradient of a scalar function is a vector
function. In two dimensions, this gradient can be written as:

AEDC-TR-10-T-36

10 Statement A: Approved for public
release; distribution is unlimited.

x

y






 
 
  
 
  

The average values of the components of the gradient in a 2D control volume can be calculated
using Eq. (2.3).

1 dA
x A x

1 dA
y A y

 

 

 


 

 


 





 (2.3)

The divergence of a vector, F  , is a scalar and can be related to either of the two components
of the 2D gradient as follows:

F F 0
0 x x
0

F F 0
y y

  

 



   
     

  

   
     

  

x
x

y
Divergence Thm

x
y

y
Divergence Thm

n
dA F dA F ndS dS n dS

n0x

n0
dA F dA F ndS dS n dS

ny









  
         

    

  
         

    

    

    

x

y

1 1dA n dS
x A x A

1 1dA n dS
y A y A

 


 


 
 

 

 
 

 

 

 

Dropping the overbar for simplicity, with the understanding that the gradient is treated as
constant within the control volume, the equation for the gradient becomes:

x

y

1 n dS
x A

1 n dS
y A









   
   
     
   
      





 (2.4)

For a triangular area, the surface integrals shown on Eq. (2.4) can be discretized by summing
the values of the integrand on each of the triangle’s three edges. Using the x-component for
example, the gradient is discretized in Eq. (2.5).

AEDC-TR-10-T-36

11
Statement A: Approved for public
release; distribution is unlimited.

3

x i xi i
i 1

1 1 ˆn dS n
A A

 


  (2.5)

In Eq. (2.5), i is the average value of the scalar over the edge and can be calculated as the
average of the values of the two nodes that makes up the face or as the average of the value at
the two cell centers on either side of the face. It will be shown that using the nodal values adds
simplicity to the final equations. xin̂ is the x component of the surface unit-normal vector for

face i. The unit-normal is normalized by i which is the length of face i. A nonhatted n will
indicate a nonunit normal vector component, which is found using Eq. (2.6).

xi
xi xi xi i

i

yi
yi yi yi i

i

nˆ ˆn n n

n
ˆ ˆn n n

   


   


 (2.6)

The normal vectors for each of the three edges are calculated as follows:

x1 3 2

x2 1 3

x3 2 1

n y y
n y y
n y y

 

 

 

 

 

 

y1 3 2

y2 1 3

y3 2 1

n x x

n x x

n x x

  

  

  

 (2.7)

The value of the gradient on each edge will be treated as the average of the value at the two
nodes that define the edge (note from Fig. 3 that the edge number corresponds to the node
opposite the edge) and will be designated by an overbar.

 

 

 

1 2 3

2 1 3

3 1 2

1
2
1
2
1
2

  

  

  

 

 

 

Using the numbering convention from Fig. 3 results in the following equation.

     
3 3

i xi i i xi 2 3 x1 3 1 x2 1 2 x3
i 1 i 1

1 1 1 1 1 1n̂ n n n n
x A A A 2 2 2


       
 

  
         

  
 

Rearranging this equation generates Eq. (2.8):

      

      

2 3 x1 3 1 x2 1 2 x3

2 3 y1 3 1 y2 1 2 y3

1 n n n
x 2A

1 n n n
y 2A


     


     


     




     



 (2.8)

AEDC-TR-10-T-36

12 Statement A: Approved for public
release; distribution is unlimited.

Rearranging Eq. (2.8) gives the most common form for the gradient component equations.

      

      

x2 x3 1 x3 x1 2 x1 x2 3

y2 y1 1 y3 y1 2 y1 y2 3

1 n n n n n n
x 2A

1 n n n n n n
y 2A


  


  


     




     



 (2.9)

Using the fact that the normals sum to zero – which can be easily seen from Eq. (2.7) – Eq.
(2.9) simplifies to Eq. (2.10), and the derivatives from Eq. (2.10) are used to form the 2D
gradient of the scalar, which is shown in Eq. (2.11).

 

 

x1 1 x2 2 x3 3

y1 1 y2 2 y3 3

1 n n n
x 2A

1 n n n
y 2A


  


  


   




   



 (2.10)

 x1 1 x2 2 x3 3

y1 1 y2 2 y3 3

n n n1x
n n n2A

y



  


   

 
    
           
  

 (2.11)

2.2 LAPLACE AND POISSON’S EQUATION

A large segment of this report deals with the Winslow elliptic smoothing equations, which are
derived in detail in Appendix B and discussed in further detail in Section 5.0. The Winslow
equations are used to ensure smoothness in a computational mesh and are derived by applying
the Laplacian (with respect to the physical mesh coordinates) to the computational coordinates.
Because this system of equations is based on Laplace’s equation (for a homogenous system) or
Poisson’s equation (for a nonhomogeneous system) it is interesting to compare it with other
systems that follow the same laws.

Some other systems where the Laplacian is used are the steady-state heat equation  2T 0 
and the velocity potential equation. When a flow is steady, irrotational, and isentropic, the Euler
equations can be simplified into the potential velocity equation, and it can be observed that

2 0  and 2 0  where lines of constant  are known as streamlines and lines of constant
 are known as equipotential lines. In this situation  is the equipotential function and  is the
so-called stream function, defined so as to satisfy continuity identically (Ref. 9).

The equipotential function and stream function are developed by looking at the continuity
equation for incompressible flow.

u v 0
x y

 
 

 
 (2.12)

AEDC-TR-10-T-36

13
Statement A: Approved for public
release; distribution is unlimited.

The equipotential function, , is defined such that u
x




and v

y




. Plugging these

relationships into Eq. (2.12) gives Laplace’s equation for , which is 2 0  . If the stream

function, , is defined such that u
y





and v
x


 


, then the continuity equation is identically

satisfied:

2 2u v 0
x y x y x y

    
   

     

This relationship can now be plugged into the equation for vorticity  z and, if the flow is
irrotational, the result is again Laplace’s equation:

 z
u v
y x


  

   
  

 (2.13)

2 2

z2 2y x
 


 

  
 

2
z   

 2 0  (2.14)

It is interesting to examine a flowfield generated using the velocity potential equations, such as
the one shown in Fig. 4, where the darker blue lines are streamlines, and the lighter blue lines
are equipotential lines. The lines of constant  and constant  form a system similar to what
would be expected when generating a mesh that is smoothed using the elliptic smoothing
equations (also based on Laplace’s equations).

Figure 4. Flowfield Generated Using the Velocity Potential Equation

AEDC-TR-10-T-36

14 Statement A: Approved for public
release; distribution is unlimited.

2.3 LAPLACIAN SMOOTHING VS. WINSLOW SMOOTHING

Prior to work done by Knupp, smoothing techniques on unstructured meshes were dominated
by Laplacian smoothing because of its generality and ease of implementation. However, Knupp
felt that the additional work of implementing the Winslow elliptic smoothing equations was worth
the effort because of the robustness against grid folding that is achieved by using the Winslow
equations (Ref. 10). In Laplacian smoothing, node positions are determined by solving the
Laplacian of the physical coordinates with respect to the computational coordinates. In two
dimensions, this becomes:

2 2
2

2 2

2 2
2

2 2

x xx 0

y yy 0

 

 

 
   

 

 
   

 

 (2.15)

Laplacian smoothing is easy to implement because the position of a node can be solved as the
average of the positions of the N neighboring nodes:

N 1

n m
m 0

1x x
N





  (2.16)

Although Laplacian smoothing is easy to implement, its usefulness is limited by the fact that it
sometimes results in mesh folding/spillover, and no mathematical guarantee against such
folding can be constructed (Ref. 10). The Winslow equations are obtained by requiring that the
computational coordinate variables ( and ) be harmonic functions and then interchanging the
dependent and independent variables in the corresponding Laplace equations. That is,
Laplacians of the computational space are now dealt with in respect to physical space, as
shown in Eq. (2.17).

2 2
2

2 2

2 2
2

2 2

0
x y

0
x y

 


 


 
   

 

 
   

 

 (2.17)

The derivation of the Winslow equations from the above Laplace equations (Eq. [2.17]) is
discussed in detail in Appendix B, but it is worth noting that the technique that was used by
Knupp was to let a local discrete uniform computational space for a node with a valence count
of N be given by Eq. (2.18) and then letting the physical coordinates of the nodes be a function
of the computational space coordinates:  x x ,  and  y y ,  .

 m m

m m

cos
sin

 

 




 (2.18)

 where: 2 m
N


 

AEDC-TR-10-T-36

15
Statement A: Approved for public
release; distribution is unlimited.

By assuming that there exist smooth functions,  x x ,  and  y y ,  , on the local
computational space and that these functions can be approximated about the origin by a Taylor
series expansion, the expansion can be used to approximate the first and second derivates of x
and y that are needed to construct the necessary coefficients of the Winslow equations.

3.0 ISOTROPIC WINSLOW SMOOTHING

3.1 ELLIPTIC SMOOTHING

Winslow smoothing is the term commonly used to describe the method of elliptic mesh
smoothing based on manipulating a mesh (structured or unstructured) using the Winslow elliptic
smoothing equations. The Winslow equations, which are derived in detail in Appendix B, are
found by taking the Laplacian of the computational space coordinates with respect to physical
space.

2

2

0
0





 

 
 (3.1)

The Laplacian follows the Min/Max principle, which says that given a scalar field over a region R
that satisfies Laplace’s equation, 2 0  , the value of a nonconstant scalar function, , cannot
attain its maximum or minimum in the interior. This can be deduced from the fact that Laplace’s
equation, which is said to be harmonic, has the property that the average value over a spherical
surface is equal to the value at the center of the sphere (Gauss’s harmonic function theorem)
(Ref. 11). Suppose that one wishes to solve Laplace’s equation in any region R. Consider any
point p inside R and a circle of any radius r0 (such that the circle is inside R). Let the value on
the circle be f(). If Laplace’s equation holds, the value at any point is the average of the values
along any circle of radius r (lying inside R) centered at that point. The proof is by contradiction.
Suppose the maximum or minimum was at point p as illustrated in Fig. 5. The value at point p
should be the average of all points on any surrounding circle, such as the one with radius r0; it is
impossible for the value at p to be larger or smaller than the maximum or minimum surrounding
point.

Figure 5. Region Surrounding a Control Volume

The Winslow equations are derived by transforming the Laplacian of the computational space
coordinates with respect to physical coordinates such that the equations are now with respect to

AEDC-TR-10-T-36

16 Statement A: Approved for public
release; distribution is unlimited.

computational coordinate and the physical coordinates are now the dependent variables. This
transformation is necessary because it is generally the physical coordinates that will be modified
using elliptic smoothing. The coordinates of the computational space need to be defined (either
implicitly or explicitly) and can then be further manipulated to affect the physical mesh as
required. The Winslow equations are constructed such that the dependent variables are now the
physical coordinates and the partial derivatives are now with respect to the computational
coordinates. This is useful because it is the physical coordinates that will be modified using
elliptic smoothing. The Winslow equations, in the form most relevant to the work performed
herein, are shown below as Eq. (3.2) with the coefficients shown as Eq. (3.3).

2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
   

  
   

  
  

   

  
  

   

 (3.2)

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

 (3.3)

3.2 VIRTUAL CONTROL VOLUMES

In order to explore the computational space of a two dimensional unstructured mesh, consider a
small subsection of a mesh comprised of triangles such as that shown in Fig. 6. There are three
internal nodes (marked as:). Unlike structured grid methods, unstructured methods have
not traditionally had a well-defined computational space associated with the physical space.
While a global unstructured computational space remains elusive, nodes in an unstructured
mesh can be mapped to an individualized computational space based on virtual control volumes
decoupled from one another in computational space. (They remain loosely coupled through their
relationship in physical space.) The computational space that is suggested by Karman et al
(Ref. 12) is one in which the node in question lies at the center of a virtual control volume based
on a regular (equiangular) polygon whose vertices intersect a unit circle. For each of the internal
nodes shown in physical space in Fig. 6, the corresponding computational space can be seen in
Fig. 7.

Defining the computational space in this way lends itself well to solving the Winslow equations
(especially in inviscid regions where an isotropic mesh is desired) and allows the equations to
be solved even if the physical grid is inextricably tangled. The computational space (space)
shown in Fig. 7 is based on the valence count of the node in physical space, which is mapped to
the center of a regular polygon whose vertices intersect a unit circle. The nodes in this figure are
color-coordinated to the nodes in physical space in Fig. 6.

AEDC-TR-10-T-36

17
Statement A: Approved for public
release; distribution is unlimited.

Figure 6. Subsection of an Unstructured Mesh

Figure 7. Virtual Control Volumes in Computational Space

3.3 DISCRETE FORM OF WINSLOW EQUATIONS

The discretization of the Winslow equations focuses on the Laplace form of the equations (i.e.,
the homogeneous equations without any forcing functions). The justification for this is that a
desired grid spacing that might incline a user to use the Poisson form of the equations can also
be generated by manipulating the computational space, so forcing functions become
superfluous. The Laplace form of the Winslow equations for x and y (using condensed notation
for the derivatives) are x 2 x x 0      

 and y 2 y y 0       .

The logic described in this section is used to get the Winslow equations in a form that can be
used to solve the overall global system consisting of all nodes in a region that is to be
smoothed. (Note that the physical coordinate in the x direction is used in the following derivation
but that the derivation also applies to the gradients of y with respect to  and as well.)

Because the Winslow equations are cast in computational space, the gradient operator   will
be defined such that when operating (through the dot product) on a vector in computational
space the results are as shown with Eqs. (3.4) and (3.5).

AEDC-TR-10-T-36

18 Statement A: Approved for public
release; distribution is unlimited.

x

F F x x
x


 

  

   
    

  
 (3.4)

 

 

 

x
ˆ ˆF F x 0 x F n x n

0

x
ˆ ˆF F x 0 x F n x n

0

0
ˆ ˆF F 0 x x F n x n

x



   



   

   








  
        

 

  
        

 

  
        

 

 (3.5)

The Winslow equations in a two-dimensional control volume can be written in integral form as
shown as Eq. (3.6). The logic illustrated in Eq. (3.5) combined with the divergence theorem from
Section 2 generates the homogeneous Winslow equations in terms of the surface integral over
the surface of the control volume. This is shown as Eq. (3.7):

 

 
A

A

x 2 x x dA 0

y 2 y y dA 0

  

  

  

  

  

  




 (3.6)

 

 

ˆ ˆ ˆx n 2 x n x n dS 0

ˆ ˆ ˆy n 2 y n y n dS 0

     

     

  

  

  

  




 (3.7)

The virtual control volume for a node with a valence count of four, such as the node represented
as in Fig. 6, is shown in Fig. 8. The vectors t1 through t4 in Fig. 8 are the nonunit normal
vectors for the surface of the overall virtual control volume. As will become clear when the
equations are further expanded, t is used instead of the more typical n when describing the
overall surface normal vectors because these vectors need to be distinguished from the normal
vectors of the individual triangular elements that comprise the control volume (which are used to
calculate the gradients in the control volume).

Figure 8. Virtual Control Volume for a Valence-Count 4 Node

AEDC-TR-10-T-36

19
Statement A: Approved for public
release; distribution is unlimited.

Figure 9. Control Volume for a Single Valence-4 Node Exploded Into its Individual

Triangular Components

In Fig. 9, the control volume from Fig. 8 is shown exploded into the triangular sectors that make
up the overall control volume. The nonunit normal vectors for each of the triangles comprising a
control volume are illustrated in Fig. 9. The variable t is the nonunit surface normal vector of the
overall control volume (i.e., i i

ˆt t d where it̂ is the unit normal vector and d is the length of
face i). The discretized Winslow equation (for x) defined for a given control volume with a
valence count of N (i.e., N is the number of neighboring nodes and thus the number of triangles
comprising the control volume) is shown below as Eq. (3.8).

 
N

i 1 i

ˆ ˆ ˆˆ ˆ ˆx n 2 x n x n dS x t 2 x t x t d 0                


        

N

i 1 i

x t 2 x t x t 0       


     (3.8)

Expanding this summation for a node with a valence count of 4, such as the central node shown
in Figs. 8 and 9, gives:

4

i 1 i

x t 2 x t x t 0       


    

1 2

3 4

x t 2 x t x t x t 2 x t x t

x t 2 x t x t x t 2 x t x t 0

           

           

     

     

          

            

The discretized integral expanded above is the integral for the central node’s entire control
volume, whose surface has been discretized into four line segments. However, the elliptic
smoothing equations apply to an arbitrary control volume, so the argument can be made that
the only way for this integral to be zero in general is if the integrand is zero. Another way to

AEDC-TR-10-T-36

20 Statement A: Approved for public
release; distribution is unlimited.

think about this is that the discrete form of the Winslow equations has to apply everywhere in
the domain, both globally and locally. Thus, for each of the sectors (the individual triangles in
discretized space) of the control volume, the following equations apply:

x t 2 x t x t 0
y t 2 y t y t 0
     

     

  

  

  

  
 (3.9)

The Gradient equations from Section 2 can be applied to get the values of the gradients (with
respect to the computational coordinates) in each triangle.

 

 

1 1 2 2 3 3

1 1 2 2 3 3

1x n x n x n x
2A
1x n x n x n x

2A

   

   

   

   

 (3.10)

 

 

1 1 2 2 3 3

1 1 2 2 3 3

1y n y n y n y
2A
1y n y n y n y

2A

   

   

   

   

 (3.11)

In the equations for the gradients, 1n 2n and 3n represent the  component of the nonunit
normal vector of the three sides of the triangle and likewise for . Using the gradient
relationships from Eqs. (3.10) and (3.11) in Eq. (3.9) and multiplying by -2A (which can be done
because no forcing functions are being used and the equations are homogeneous) results in
Eq. (3.12).

   

 

   

 

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

n x n x n x t 2 n x n x n x t

n x n x n x t 0

n y n y n y t 2 n y n y n y t

n y n y n y t 0

       

   

       

   

 



 



    

   

    

   

 (3.12)

Rearranging Eq. (3.12) gives the Winslow equations in a form that allows them to be solved for
the central node (x1,y1) using an iterative method such as the Point Implicit method. This final
form is shown as Eq. (3.13).

   

 

   

 

1 1 1 1 2 2 2 2

3 3 3 3

1 1 1 1 2 2 2 2

3 3 3 3

x n t 2 n t n t x n t 2 n t n t

x n t 2 n n t 0

y n t 2 n t n t y n t 2 n t n t

y n t 2 n t n t 0

           

    

           

     

     

  

     

  

    

   

    

   

 (3.13)

AEDC-TR-10-T-36

21
Statement A: Approved for public
release; distribution is unlimited.

The values in parentheses in Eq. (3.13) can be thought of as weights for the Winslow equations
at each node, and the two equations shown in Eq. (3.13) can be rewritten in matrix form as
follows:

1 11 2 12 3 13

1 21 2 22 3 23

x w x w x w 0
y w y w y w 0

  

  

 13 311 1 12 2

23 321 1 22 2

w 0 xw 0 x w 0 x
0

0 w y0 w y 0 w y
          

            
           

 (3.14)

To solve the overall system, a global coefficient matrix is constructed where each element of the
global matrix is a 2 2 matrix and each row of the global matrix represents a single node in the
system. The values of the elements of the row associated with a given node are constructed by
using the values of w11 and w21 as contributions to the diagonal element of the row (the central
node) and the values of w12, w22, w13, and w23 as contributions to the off-diagonal elements.
Refer to Fig. 9 and it becomes clear that the contributions for each triangle making up the
control volume for a node are being summed to satisfy the integrals first shown as Eq. (3.7) and
then discretized in Eq. (3.8).

A node with a valence count of 4, such as the central node shown in Fig. 9, will have a control
volume comprised of 4 triangles, each of which will have a vertex that represents the central
node and two vertices that represent two of the central node’s neighbors. The local numbering
convention used for each of the triangles is that the central node is node number 1 and the two
neighboring nodes are numbered node 2 and node 3 based on the right-hand rule. The weights
for each of the nodes in each of the triangles are calculated based on the normal vectors and
the Winslow coefficients for each triangle. (The gradients, and thus the coefficients, are treated
as constant within each triangle.) When the contributions for each of the triangles have been
summed up, the off-diagonal contributions (w12, w22, w13, and w23) can be moved to the right-
hand side of the global equation, and central node values (w11 and w21), which are on the
diagonal, can be solved in an iterative fashion.

3.4 ISOTROPIC WINSLOW EQUATIONS APPLIED TO FLAT PLATE

A two-dimensional flat plate mesh was created using the Gridgen software package (Ref. 13).
This mesh (shown in Fig. 10) closely resembled a mesh described in Ref. 14 which explored the
area of mesh movement but used entirely different techniques that were based on the Linear
Elastic equations. Three cases were examined using the mesh from Fig. 10: rotation,
translation, and a warping of the flat plate surface. The results from these three cases are
shown in Fig. 11. For each of the cases in Fig. 11, the mesh is shown on the left after the inner
surface is moved but before smoothing has been performed, and then on the right after
smoothing has been performed.

AEDC-TR-10-T-36

22 Statement A: Approved for public
release; distribution is unlimited.

Figure 10. Refined Symmetric Flat Plate Mesh

AEDC-TR-10-T-36

23
Statement A: Approved for public
release; distribution is unlimited.

Figure 11. Results from Applying Winslow Equations to Flat Plate Mesh That has Been

Rotated, Translated, and Warped into a Semi-Circle

AEDC-TR-10-T-36

24 Statement A: Approved for public
release; distribution is unlimited.

Although all of the grids in Fig. 11 look relatively good, the mesh where the flat plate has been
warped into a semi-circle illustrates the need to have the ability to move boundary points if a
surface near another boundary is going to be modified. The mesh near the right endpoint of the
flat plate is shown in Fig. 12 and again in a close-up view in Fig. 13. The close-up in Fig. 13
follows two sets of points (marked as black and blue dots) before and after mesh movement is
performed and shows the difficulty in trying to wrap the mesh around the new geometry while
retaining the original connectivity and outer surface grid spacing.

In Fig. 13 it can be seen that the smoothing equations attempt to wrap the two lines of
connectivity around the warped flat plate, but in some areas the spacing and limited connectivity
between the two lines in not adequate to generate a high-quality mesh. Before the flat plate is
warped, there is adequate space between the two sets of nodes to accommodate the
connectivity between the sets. However, after the flat plate is warped and the mesh has been
smoothed, the two sets of nodes are driven together in a way that makes it difficult for valid
connectivity to be maintained.

Figure 12. Lines of Connectivity Between an Inner Boundary and an Outer Boundary

AEDC-TR-10-T-36

25
Statement A: Approved for public
release; distribution is unlimited.

Figure 13. Connectivity Path Between Surface and Outer Boundary Before and After

Surface Modification

3.5 ISOTROPIC WINSLOW EQUATIONS APPLIED TO NACA0012 AIRFOIL

It should be noted that although isotropic Winslow equations have significant limitations, there
are also many situations in which they are extremely valuable tools for mesh manipulation. One
of these situations is to smooth the inviscid mesh of a body that has been moved or deformed in
some manner. Another situation where the isotropic Winslow equations can add significant
value is in adaptive mesh refinement where h-refinement is employed.

A NACA0012 airfoil is used to illustrate the implementation and value of the isotropic Winslow
grid smoothing algorithms. The airfoil, which had an initial angle of attack of 0 deg, was rotated
to a nose-down position of 60 deg and the mesh was smoothed. The grid before and after the
rotation can be seen in Figs. 14 and 15. Note that after the initial rotation, the mesh is
completely invalid. The boundary points associated with the airfoil surface were moved, but all
of the interior points remained stationary, which resulted in a mesh containing extreme grid
crossing and skewness. This is not an issue when structured grids are utilized because
structured grids have an implicit computational space that is not invalidated by an invalid
physical mesh as long as the grid connectivity does not change. Likewise, by using equal
angle/equal edge-length virtual control volume as the computational space for the unstructured
mesh, the invalid physical space was not an issue, and a high-quality inviscid mesh was
generated for the transformed airfoil mesh.

AEDC-TR-10-T-36

26 Statement A: Approved for public
release; distribution is unlimited.

Figure 14. NACA0012 Airfoil Before and After Rotation

Figure 15. NACA0012 Mesh After Winslow Smoothing has Been Performed

The next case that is examined is a transonic case involving a NACA0012 airfoil in a Mach 0.95
flow. This is the case that was discussed in the Refinement Section. At Mach 0.95 and zero
angle of attack, the airfoil exhibits a distinct sonic line or “fishtail shock” in its wake. The
objective of examining this case was to use solution adaptation to adapt the original grid (shown
in Section 3) with the hope of capturing the shockwaves coming off the airfoil and also the
secondary shock behind it. This was an excellent case for employing the inviscid Winslow
equations because the areas of interest (the sonic lines) were in the inviscid region of the mesh
and thus an isotropic mesh in these regions was adequate. H-refinement schemes determine
regions of the grid where the solution is underresolved and add elements locally to improve the
resolution. However, if no smoothing is employed, the mesh can become extremely skewed as

AEDC-TR-10-T-36

27
Statement A: Approved for public
release; distribution is unlimited.

more points are added to a given area. Winslow elliptic smoothing can alleviate this tendency
toward skewed cells as additional nodes are added.

Figure 16 shows that the adaptation algorithm, coupled with the Winslow elliptic smoothing
algorithm, successfully captured the shock coming off the airfoil and also the secondary shock
behind it. As the solution was repeatedly refined, the mesh elements in the area of the shock
would have become increasingly skewed if no smoothing was employed. It is likely that
eventually the skewness of the cells would have negatively affected the CFD solution. An
enlarged image of the final mesh is shown in Fig. 16, and it can be seen that even after many
refinement iterations, the mesh elements in the region of the shock still have good isotropic
aspect ratios due to the application of isotropic Winslow smoothing.

Figure 16. Close-Up of an Isotropic Refined Mesh in the “Fishtail Shock” Region After

Six Refinement Iterations

4.0 WINSLOW EQUATIONS ON BOUNDARIES

As noted in the previous section, the Winslow elliptic smoothing equations are derived from
Laplace’s equations for a parameter distribution over a region. When applied to an unstructured
mesh, the equations allow interior mesh points to be moved and smoothed to conform to a
moving mesh. Traditionally, the Winslow equations have been applied only to interior mesh
points on unstructured meshes. The methodology outlined in this section allows for the
implementation of the Winslow equations on boundary points as well. The Winslow equations
deal with derivatives of physical space (x,y) with respect to computational space (). The
equations, which were first defined in Section 5, are restated below.

AEDC-TR-10-T-36

28 Statement A: Approved for public
release; distribution is unlimited.

2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
   

  
   

  
  

   

  
  

   

The Winslow equations are applied to a control volume (in computational space) around each
point in the mesh. By employing the Divergence Theorem, a set of surface integrals, shown
below, is generated on which the Winslow equations can be solved to smooth the physical
coordinates of the mesh points.

2 2 2

2 2

2 2 2

2 2

x x x x x xˆ ˆ ˆ2 dA n 2 n n dS 0

y y y y y yˆ ˆ ˆ2 dA n 2 n n dS 0

  

  

     
      

     
      

        
        

        

        
        

        

 

 

In the above equations, n̂ is the  component of the unit normal vector on the surface of the

control volume in computational space, and n̂ is the  component of the unit normal vector on
the surface. The surface integrals can be discretized on the surface as follows:

x x xˆ ˆ ˆn 2 n n d 0

y y yˆ ˆ ˆn 2 n n d 0

  

  

  
  

  
  

   
    

   

   
    

   





 (4.1)

In the discretized equations, d is the length of a discrete surface segment. Eq. (4.1) can be
simplified by applying the relationship between the unit normal vector (n̂) and a nonunit normal
vector (n) on a given surface segment. Applying this relationship, which is n̂ n  , simplifies
Eq. (4.1) to Eq. (4.2).

x x xn 2 n n 0

y y yn 2 n n 0

  

  

  
  

  
  

   
   

   

   
   

   





 (4.2)

The 9-point unstructured mesh shown in Fig. 17 gives an example of a control volume on which
smoothing equations could be applied. In this figure the nodes are numbered in order to
illustrate the mapping from physical space to computational space, where the Winslow
equations are applied.

The only interior node in Fig. 17 is node 8, and the computational space for node 8 is shown on
the right-hand side of Fig. 17. The computational stencil for the interior point (node 8) is
relatively straightforward, but no intrinsically obvious stencil exists for a point on a boundary,
such as node 5. Recall from Section 1 that the computational stencil of a boundary point is
incomplete. In order to complete the computational stencil for a boundary point, the concept of

AEDC-TR-10-T-36

29
Statement A: Approved for public
release; distribution is unlimited.

ghost nodes is introduced. If, for example, it was desired that node 5 in Fig. 17 be allowed to
float, a ghost point could be placed as shown in Fig. 18. The ghost point, which in this case is
node 9, allows the control volume in computational space to be closed. The closed virtual
control volume making up the computational space for the surface node (node 5) can be seen in
Fig. 18.

Figure 17. Interior Node (Node 8) in Physical (Left) and Computational (Right) Space

Figure 18. Surface Node (Node 5) and Ghost Node (Node 9) in Physical (Left) and

Computational (Right) Space

4.1 PLACING GHOST POINTS

If a node on a surface, such as node 5 in Fig. 18, is to be allowed to float, it will need an
associated ghost point (such as node 9 in the previous figures) in order to close the virtual
control volume to which the node is mapped in computational space. The Winslow equations

AEDC-TR-10-T-36

30 Statement A: Approved for public
release; distribution is unlimited.

are solved in computational space, and the parameters they solve for are the physical x and y
coordinates of node 5 based on the physical x and y values of the connected neighboring nodes
(nodes 6, 7, 8, 4, and 9). Because the value of x and y for node 5 is a function of the values of x
and y for the connected nodes, it is necessary to place the ghost point at some reasonable
location in physical space.

The first attempt at placing the ghost point was to place it at the same location as the associated
boundary node. However, this had a fatal effect on the boundary points. For example, when the
top outer boundary of a mesh surrounding a flat plate was allowed to float and the ghost point
values were set to the values of their associated boundary nodes, the surface points were all
driven either to the corners of the boundary or, because of the symmetry characteristics of the
mesh, to the symmetry plane. This effect can be seen in Fig. 19.

Upon further consideration, it makes sense that this method of placing ghost points would cause
problems. To illustrate this, consider the control volume shown in Fig. 18, which is in
computational space. It is apparent from Fig. 18 that node 5 will never be able to reach
equilibrium with the surrounding points if one of the surrounding points is always being driven to
the same value as the point at the center. This is what is happening as the attempt is made to
generate a solution on the flat plate mesh. The central nodes in computational space that
represent floating-node boundary points will never be able to reach a converged solution, and
nodes in physical space will be driven in some direction until the solver runs out of iterations.

Figure 19. Effect of Co-Locating Ghost Points with Their Associated Surface Points

AEDC-TR-10-T-36

31
Statement A: Approved for public
release; distribution is unlimited.

Figure 20. Placement of a Ghost Point

The next attempt at defining the coordinates of the ghost point involved calculating the average
location of all interior points (PA) connected to a surface point (PS) and then extending the line
connecting PA and PS. Once the line connecting PA and PS was extended, a ghost point (PG)
was then placed on this extended line at a distance equal to the distance between PA and PS.

To graphically illustrate the placement of the ghost points, consider the surface point shown as
PS in Fig. 20. PS has 3 interior nodes to which it is connected; these points are shown in green
in Fig. 20. The average interior point (PA) is placed at the average coordinates of the three
attached points. A line is then formed between PA and PS using the point slope equation of a line

  1 1y y m x x  
 and a ghost point, PG, is placed on that same line at a distance outside the

boundary equal to the distance between PA and PS.

4.1.1 Reflection vs. Extension

Placing the ghost points using the extension technique described above gave reasonable
results, but in order to most efficiently place the ghost points, the methodology used for the
ghost point placement was explored further. As described previously, the first viable method for
placing the ghost points involved extending a line connecting PA to PS and placing PG on that
line at a distance equal to the distance between PA and PS. Another possible technique would
be to use a direct reflection of PA about the boundary surface at PS. The contrast in the
placement of the ghost point using these two techniques is illustrated in Fig. 21.

AEDC-TR-10-T-36

32 Statement A: Approved for public
release; distribution is unlimited.

Figure 21. Ghost Point Placement: Reflection vs. Extension

Intuitively, from examining Figs. 20 and 21 it appears that placing the ghost point using
reflection would tend to be a better convention. Looking at the mesh in these figures, which has
a circular outer boundary, it can be seen that PA is at a location which is generally clockwise
from PS. However, placing the ghost point using extension will put the ghost point at a position
which is slightly counterclockwise to PS, thus diminishing some of the force that is driving the
surface point in the desired direction (toward the average of the connected interior points). By
using reflection to place the ghost point, the ghost point complements the interior points in
driving the surface point to a new location rather than counterbalancing them.

4.1.2 Reflection Methodology

If reflection is to be used, a matrix of transformation is used to place the ghost point by mapping
PA onto a reflected position. This transformation, 2 2T :  , has the form:

    T x R x (4.3)

In Eq. (4.3),  R
 is a standard matrix of linear transformation and x is the coordinate vector of

the point that is being mapped to a new position. In order to calculate the standard matrix of

reflection, one must construct the tangent vector, 1

2

d
d

d
 

  
 

, about which the point will be

reflected. This tangent vector will represent a line tangent to the boundary surface at the point
PS. For a discretized boundary surface, the tangent can be approximated as s sP P  where sP 

AEDC-TR-10-T-36

33
Statement A: Approved for public
release; distribution is unlimited.

is the point on the surface before PS and sP  is the point on the surface after PS. Using the
tangent vector of the line tangent to the surface at PS, the standard matrix of reflection can be
found as Eq. (4.4), and once the matrix of reflection is known, the ghost point can be calculated
using Eq. (4.5).

  
2 2 2 2

1 2 1 2
2 2 2 2 2 2

1 2 1 2 1 2

d d 2d d1R
d d 2d d d d

 
  

   
 (4.4)

  
Gx

G A
Gy

P
P R P

P
 

  
 

 (4.5)

As expected, using the reflection technique to place the ghost points did improve convergence.
However, the effect was not drastic. Figure 22 shows a comparison that illustrates the difference
in using the two techniques. It can be seen that after 1,000 iterations the mesh that is generated
using the reflection technique (shown in magenta) is “leading” the mesh that is generated using
the extension technique (shown in blue) as the two meshes advance toward a converged
solution. The effect is most obvious by observing lines coming off the ends and the center of
the flat plate, which are seeking a state such that they are normal to both the inner surface (the
flat plate) and the outer boundary surface.

Figure 22. Convergence Comparison for a Mesh Using Extension and Reflection to Place

the Ghost Nodes

4.2 ANALYTICALLY DEFINED BOUNDARIES

4.2.1 Flat Boundaries

The mesh smoothing algorithm that performs the mesh movement is a point iterative scheme
where the coefficients in the Winslow equations, , , and  must be recomputed at each
iteration. Each time an iteration is performed, all of the nodes will move to a point that the
smoothing algorithm considers the optimal placement for that iteration. For interior points, this
new position will be the starting place for the next iteration. However, for boundary points there
is an additional step. At each iteration, each boundary point that has moved must be projected
back to the surface that defines the original boundary. If this is not done, the boundary will begin

AEDC-TR-10-T-36

34 Statement A: Approved for public
release; distribution is unlimited.

to wander away from its original position to a position that better satisfies the elliptic smoothing
equations and will no longer conform to the true boundary.

The first case that was used to test the methodology for manipulating surface points using the
Winslow equations was a flat plate surrounded by an unstructured mesh bounded by flat
(constant in x or constant in y) boundary surfaces. This was the simplest analytical case, where
the boundaries were defined as being linear and constant in either the x or the y direction. A
mesh on which this would apply can be seen in Fig. 23. Recall that the Winslow equations are a
set of two equations (for each node) that are solved for the x and y coordinates. Therefore, in
the case where the boundary is flat (horizontal or vertical), only one of the equations will require
a solution. For example, on the top boundary of Fig. 23, the y-coordinate will not be changing,
so the second Winslow equation will not require a solution.

Figure 23. Flat Plate Bounded by Flat Boundary Surfaces

The mesh shown in Fig. 23 gave a good initial testbed for looking at the effects of a moving
boundary, but it is of limited practical value because it has such a rigorous definition of what
shape the outer boundaries must be (i.e., they must be constant in x or constant in y). For the
cases with the flat outer boundaries, the implementation of the Winslow equations explicitly took
this into account. The equations were implemented by only solving the equation for the
coordinate that was moving. The nodes on the top boundary of Fig. 23, for example, were not
allowed to move in the y direction, so the Winslow equation for movement in y did not even
need to be solved. In general, this is not the case, and thus the Winslow equations for both x
and y must be solved and the surface points must then be manipulated so that they conform to
the original surface definition.

4.2.2 Boundaries Defined by Functions

A treatment for boundaries defined using an analytic function was also briefly explored. It has
been the author’s experience that the most common analytically defined outer boundary used in

AEDC-TR-10-T-36

35
Statement A: Approved for public
release; distribution is unlimited.

two-dimensional external-flow CFD is a circle, so this is the boundary function that was used to
explore this methodology. A circular boundary for a region where the center is at the origin can
be defined by the expression 2 2 2x y r  where x and y are the coordinates of a boundary
point and r is the radius of the outer boundary. Once Winslow smoothing has been performed, x
and y will be modified, and then 2 2 2x y r  . The boundary point must then be moved to the
closest point which is on the original boundary surface definition. It can be shown that for a
point,  p pp x ,y , the closest point on a circle with radius r is the point of intersection between
the circle and a ray originating from the origin and passing through point p. This logic can be
used to keep the boundary points on the defined boundary but is still not ideal because it is not
general enough to be used on arbitrary boundaries.

4.3 EXPLICITLY DEFINED BOUNDARIES

Although meshes used in CFD analysis sometimes have boundaries defined by analytical
functions as described in Section 6.2, it is more common for boundaries to be defined explicitly
by a discrete shape, which can be defined in a geometry file. The nature of the geometry file will
vary, but for two-dimensional analysis the geometry file will generally take the form of a segment
file where the shape is defined by discrete line segments. Any arbitrary level of accuracy in
capturing the boundary shape or curvature can be achieved by increasing the number (and
shortening the lengths) of the line segments in the geometry file. In three-dimensional analysis,
the file will generally take the form of a tessellated surface file such as a VRML or STL file.
Because boundary surfaces are most commonly defined in this manner, it is necessary that a
floating-node boundary on a mesh which is to be smoothed is able to adhere to a boundary
explicitly defined in this way.

Projection onto an explicitly defined boundary is achieved by utilizing a C++ “geometry” class
that was developed by Dr. Steve Karman at The University of Tennessee at Chattanooga
(UTC). Using this class, the boundary is defined in a geometry file, which is comprised of a
user-defined number of line segments on the surface. The number of segments will vary
depending on the desired tolerance of the projection onto the surface. The geometry file on
which the geometry surface is based can be easily generated using Gridgen by exporting a
curve (or number of curves) under the INPUT/OUTPUT commands in the Gridgen interface
(Ref. 13).

Initially, the floating boundary-node logic was examined using a one-unit-length flat plate in an
unstructured region surrounded by a circular outer boundary with a radius of 2 . If the flat plate,
which is relatively close to the outer boundary, is allowed to float within the region while the
outer boundary is held static, it is difficult for the mesh to maintain high quality. This is because
the connectivity between the inner and outer boundaries does not change, so the unstructured
elements must stretch to try to accommodate the new orientation of the inner boundary (the flat
plate). Eventually the stretching will result in unacceptable levels of skewness in the mesh and
even negative volumes as mesh lines begin to cross. This is illustrated by Fig. 24, which shows
the mesh as the flat plate is rotated to 45 and 90 deg while the nodes on the boundaries are
held static.

AEDC-TR-10-T-36

36 Statement A: Approved for public
release; distribution is unlimited.

Figure 24. Flat Plate Rotated 45 and 90 deg While Boundary Nodes are Held Static.

When the outer boundary nodes are allowed to float and the smoothing logic for boundaries is
employed, the results for the rotated flat plate are shown in Fig. 25. An interesting comparison
can be made between the rotated mesh and the mesh in its original smoothed position (i.e.,
when the mesh has been smoothed but the flat plate has not been rotated). The mesh, including
the outer boundaries, looks the same except that they are rotated 45 and 90 deg.

Figure 25. Flat Plate Rotated 45 and 90 deg While Smoothing is Performed on Outer

Boundary Nodes

4.4 FLOATING POINTS ON MULTIPLE BOUNDARIES

The Winslow elliptic smoothing code was extended to be able to handle moving points on
multiple boundaries. To test this capability, a mesh was generated that had a structure similar to
the flat-plate mesh, but instead of a flat plate the inner surface was a NACA0012 airfoil shown in
Fig. 26.

When dealing with a shape such as an airfoil, which has two portions of the surface that are
relatively close together, it is necessary to split the surface into an upper and lower portion and
limit the surface-point projection to the original surface. Otherwise (e.g., at the sharp tail of an
airfoil) a node from the upper surface can easily be projected onto the bottom surface if the
node is moved between the two surfaces when smoothing is performed. This undesirable effect
is illustrated in Fig. 27.

AEDC-TR-10-T-36

37
Statement A: Approved for public
release; distribution is unlimited.

A separate boundary condition was added to the code to handle boundaries that were
comprised of multiple sections. The boundary condition was implemented in such a way that
when the mesh was smoothed, the endpoints remained in their original position while the
remaining points on the boundary were allowed to float. This was different from the previous
implementation where all surface nodes, even the nodes at endpoints, were allowed to float.
When this new boundary condition was implemented, the mesh surrounding the interior (airfoil)
surface acted as expected. These results can be seen below in Fig. 28.

Figure 26. Airfoil Mesh Before and After Smoothing

Figure 27. Effect of Projecting Onto the Wrong Surface of a Sharp Airfoil Tail

AEDC-TR-10-T-36

38 Statement A: Approved for public
release; distribution is unlimited.

Figure 28. Close-Up of Mesh Near Interior Surface at Nose and Tail of Airfoil

In Figure 28, the airfoil surface was defined as two distinct surfaces (a lower surface and an
upper surface) and the surface mesh was confined to its original surface. This eliminated the
possibility of a node from the upper surface being projected onto the lower surface if the
smoothing equations placed the node between the two original surface locations.

As seen in Fig. 28, the modified mesh around the airfoil surface is comprised of what would
normally be considered very “good” triangles in that they are close to equilateral. However, note
from Fig. 28 that in order to equalize the angles in the surface triangles, the mesh points were
driven away from the airfoil surface. This might by a good mesh for an inviscid flow, but if it is
desired to capture the viscous effects of a flow within a viscous boundary layer, this will have a
negative impact on capturing the correct characteristics of the flow in this region. To alleviate
this effect, the smoothing logic must be modified such that the computational space (which
currently utilizes equal angles) can be utilized to try to better retain the characteristics of the
original mesh. This is discussed in detail in Section 7.

4.5 MULTIPLE-ELEMENT AIRFOIL

4.5.1 Airfoil Rotation

The final case that was examined to explore the effects of applying the Winslow equation to
boundaries was to apply Winslow elliptic smoothing to a multi-element airfoil. The airfoil that
was employed for this purpose was the 30P30N multi-element high-lift airfoil. The 30P30N is a
three-element airfoil consisting of a central airfoil section with a flap section in the rear and a slat
section in the front. The mesh that was used was a relatively dense mesh with 23,012 mesh
points and 44,437 triangular elements. The original configuration of the airfoil was with the flap
and slat extended (the high-lift configuration); the entire mesh can be seen in Fig. 29 and a
close-up view near the airfoil surface can be seen in Fig. 30.

The 30P30N airfoil was pitched 30 deg counterclockwise, and the surrounding mesh was
smoothed using the Winslow equations to adapt the flowfield mesh to the new airfoil surface
position. The mesh was smoothed using both a static outer boundary and a floating-node outer
boundary, which can be seen on the left and right sides of Fig. 31, respectively. Initially,
because of the dense mesh and the abundance of levels of connectivity between the inner and

AEDC-TR-10-T-36

39
Statement A: Approved for public
release; distribution is unlimited.

outer surfaces, it was unclear whether the outer boundary would be greatly affected by the
treatment of the outer boundary nodes (static vs. floating). After the cases were examined, it
was determined that, in fact, the outer boundary was significantly affected. As shown in Fig. 31,
when a floating-node boundary was employed, the nodes on the outer boundary floated in a
counterclockwise direction until the final mesh closely resembled the original mesh, but rotated
30 deg. Four representative outer boundary mesh points are marked in black in Fig. 31 so that
the rotation can be easily discerned.

Figure 29. 30P30N Airfoil and Mesh

AEDC-TR-10-T-36

40 Statement A: Approved for public
release; distribution is unlimited.

Figure 30. Close-Up of 30P30N Airfoil

Figure 31. 30P30N Mesh, Without (Left) and With (Right) Floating-Node Outer Boundary

A close-up of the mesh near the airfoil (before and after the 30-deg pitch) is seen in Fig. 32. In
order to test the quality of the mesh, a CFD flow solution was generated using an in-house 2D
Euler solver for the airfoil at both 0 and 30 deg angle of attack using a freestream Mach number
of 0.95, and the results are shown in Figs. 34 and 35. The solver did not have any problems
generating a flow solution on either the zero angle of attack or the mesh that had been rotated
30 deg and then smoothed using the Winslow equations.

AEDC-TR-10-T-36

41
Statement A: Approved for public
release; distribution is unlimited.

Figure 32. 30P30N Airfoil at 0 deg Angle of Attack

Figure 33. 30P30N Airfoil at 30 deg Angle of Attack

Figure 34. CFD Solution on a 30P30N Airfoil

4.5.2 Airfoil Slat Movement

Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of the Winslow
equations applied to a boundary, it makes sense to look at how two surfaces that are close
together behave if one of the surfaces is moved relative to the other. For this, the slat at the

AEDC-TR-10-T-36

42 Statement A: Approved for public
release; distribution is unlimited.

front of the airfoil is rotated from its original extended (high-lift) position to a retracted position.
The slat is rotated over two steps, and the change in position can be seen in Fig. 35.

The mesh was smoothed at each of the two slat rotation steps. The first case that was
examined was using static nodes on all of the airfoil boundaries. When this was done, the mesh
between the slat and the central airfoil section became highly skewed. These results can be
seen in Fig. 37. The next case that was examined involved letting the boundary points on the
surface of the central airfoil section float as the slat was rotated. This gave a much better mesh
near the leading edge of the central airfoil section, and these results can be seen in Fig. 38.

The results from the exploration of the 30P30N multi-element airfoil show one practical “real
world” case where utilizing the ghost node technique for applying the Winslow elliptic smoothing
equations to the boundaries of an unstructured mesh resulted in a significant improvement
compared to the case where static-node boundaries were used and only the interior mesh was
smoothed.

Figure 35. 30P30N Airfoil with Front (Slat) Section Moved from Extended to Retracted

Position

AEDC-TR-10-T-36

43
Statement A: Approved for public
release; distribution is unlimited.

Figure 36. Original Slat Position

Figure 37. Slat Movement Using Static Surface Nodes

Figure 37. Slat Movement Using Floating-Node Boundary on Central Airfoil Section

AEDC-TR-10-T-36

44 Statement A: Approved for public
release; distribution is unlimited.

5.0 ITERATIVELY ADAPTED COMPUTATIONAL SPACE

A technique was developed that allows for the smoothing of a viscous mesh with general
spacing properties even if a viable viscous mesh is not originally available. The technique
requires that the mesh have a connectivity structure in which each node in the viscous region
has an associated surface node, as would be the case if a marching technique was used to
generate the viscous region of the mesh. The mesh is smoothed in such a way that a desired
viscous profile can be achieved based on an initial off-body spacing and the geometric
progression of the viscous layers. The initial mesh that was used to experiment with this new
technique was an inviscid (isotropic) mesh around a rough airfoil. The mesh is shown below in
Fig. 39 and, near the airfoil, in Fig. 40.

Figure 38. Full Domain of Inviscid Mesh Surrounding Rough Airfoil

AEDC-TR-10-T-36

45
Statement A: Approved for public
release; distribution is unlimited.

Figure 39. Inviscid Mesh Around Rough Airfoil Near Airfoil Surface

5.1 NORMAL OFFSET

Throughout the development of the iteratively adaptive technique and algorithm, the
computational space that is used as the starting point on which to adapt is an equal angle, equal
edge-length virtual control volume such as one of the virtual control volumes shown in Fig. 7.
The initial step in the development of an iteratively adaptive viscous smoothing algorithm was to
use a geometric progression factor to create the offset in computational space that would be
normal (orthogonal) to the no-slip surface in physical space. The offset can be defined as the
distance from the central node in computational space to the point at which the center of all the
neighboring nodes is located. (A note on terminology: as mentioned in Section 1, the node
referred to as the central node is the node-of-interest or the node being smoothed. It is always
located at the origin in computational space, and the neighboring nodes are translated around it
to accommodate the characteristics of the physical mesh.) The direction of the normal offset is
determined by which of the central node’s neighbors is the near-surface node (where near-
surface node refers to the neighboring node either directly on the no-slop surface or on the
direct path back to the surface). This near-surface node will have a given position in the list of
neighbors, and that position will determine where the node is positioned in computational space.

In the case where the associated surface node is located at position 1, the offset in
computational space will be as shown in Fig. 41. By offsetting the computational space in this
manner, the distance between the central node in computational space and the near-surface
node (distance L1) is now less than the distance between the central node and the node
opposite the surface (distance L2). This gradient in computational space causes the node in
physical space to move closer to the surface as well.

AEDC-TR-10-T-36

46 Statement A: Approved for public
release; distribution is unlimited.

Figure 40. Computational Space Offset Normal to Viscous Surface

The magnitude of the offset (d in Fig. 41, where the virtual control volume is based on a unit
circle; i.e., radius = 1) is based on the geometric progression factor (g) and is calculated as
follows:

2

1

2 1

1

2
1
1
1

L
g

L

L L

L d

d
g

d



 

 






A little additional algebra gives the equation in terms of the offset, d.

1
1

1
1

d
g

d

g dg d

dg d g






  

  

 1
1

g
d

g





 (5.1)

If nothing but the geometric-progression-based normal offset is used to modify the
computational space control volumes, a viscous mesh can be achieved without iterative
computational space adjustment, but in order to get a desired off-body spacing, the number of
layers in the viscous region would have to be such that the normal distance of the viscous
region (i.e., the distance from the surface to the edge of the viscous region) was precalculated
to equal the sum of the progressive distances of each layer. This is a limitation that can be
overcome by adding a loop into the Winslow solver that recalculates the offset “on the fly” to
match off-body spacing in the first viscous layer and the progressive spacing in the following
layers. Consider the mesh shown below in Fig. 42 with an initial off-body spacing of 0.04 and a

AEDC-TR-10-T-36

47
Statement A: Approved for public
release; distribution is unlimited.

geometric progression factor of 1.5. This will give the viscous layer distances shown in Fig. 42,
where p1, p2 and p3 are all associated with the surface node p0.

After a determined number of smoothing iterations, the normal distances in the viscous region
(i.e., the distance from the viscous node to the associated surface node) will be compared to the
desired distances, and if they do not match, the computational space will be adjusted
accordingly. For example, if the distance d2 is greater than 0.6, the offset will increase. This will
increase the computational space gradient in the normal direction and draw d2 closer to d1.
When this technique is applied to the inviscid mesh shown in Fig. 39, the mesh shown in Figs.
43 and 44 results.

Figure 41. Mesh Smoothed Using Normal Offset

Figure 42. Rough Airfoil Smoothed Using Normal Offset Computational Space

2

1 0.4
2 1* 0.6
3 1* 0.9

d

d d g

d d g



 

 

AEDC-TR-10-T-36

48 Statement A: Approved for public
release; distribution is unlimited.

Figure 43. Close-Up of Rough Airfoil Smoothed Using Normal Offset Computational

Space

5.2 NORMAL AND LATERAL OFFSET

As shown in Figs. 43 and 44, the spacing profile of the viscous layers is reasonable. However,
using only the normal offset algorithm, it is not possible to manipulate the spacing in the lateral
direction (parallel to the surface), so the nodes in the viscous region do not remain orthogonal to
their associated surface point. This results in the situation shown in Fig. 45 where the angle, ,
begins to get larger and can result in numerical instability (Ref. 15).

Figure 44. Normal Offset Computational Space Can Result in Large Angles

The lateral spacing issue is handled by implementing another offset in computational space
where the new offset is in a direction orthogonal to the normal offset direction. The
computational space will now look like Fig. 46.

AEDC-TR-10-T-36

49
Statement A: Approved for public
release; distribution is unlimited.

Figure 45. Computational Space with Offsets in Both the Normal and Lateral Directions

There are two possibilities for the lateral offset: normal offset direction 90 deg or normal offset
direction -90 deg. The direction is based on which side of the surface normal the node is on.
However, this can be handled implicitly by using the cross product [Eq. (5.2)] of the unit normal
surface vector (n) and the unit vector that passes through the node that is going to be
smoothed (v) (illustrated in Fig. 47). The cross product of two vectors is itself a vector, but
because two-dimensional meshes are being utilized, the direction will simply be k̂ or ˆk , so the
value of the cross product can be effectively treated as a scalar value with the direction
captured by the sign of the scalar.

 n v (5.2)

The cross product defined by Eq. (5.2) is extremely well suited for the task of smoothing a
viscous node in the lateral direction. It is a powerful tool because it gives information on both
magnitude and direction. By using the cross product, the initial direction of the lateral offset can
always be given by the normal direction 90 deg. If the cross product is negative, the direction
will effectively become -90 deg, so the direction does not have to be explicitly adjusted if the
node switches from one side to the other side of the surface normal. Also, as the node gets
closer to the normal direction, the magnitude of the cross product, which is equal to twice the
area of the triangle formed by the two vectors (2 n v A , the area is shown in light blue in Fig.
47), will get smaller and smaller, so the cross product (multiplied by some relaxation factor)
intrinsically makes a powerful parameter that can be used to adjust the offset and measure
convergence. Because the magnitudes of the vectors in Fig. 47 and the radius of the virtual
control volume have all been normalized to 1, the initial offset can be calculated as the height

(h) of the triangle formed by the two vectors. The area of a triangle is 1
2

A bh . The base (b) of

the triangle is 1, so h becomes:

 2  h Ab n v (5.3)

AEDC-TR-10-T-36

50 Statement A: Approved for public
release; distribution is unlimited.

Figure 46. Area Representation of Cross Product

As the mesh is smoothed, the computational space for the viscous nodes is adjusted at given
intervals (e.g., every 100 smoothing iterations). The algorithm that is used to calculate the
normal and lateral offsets and adjust the computational space accordingly is described by the
following:

 The initial normal offset is calculated based on the geometric progression factor (see
Eq. [5.1]), which is read in as an input.

 The initial lateral offset is calculated as the distance h (see Eq. [5.3]) based on the
cross product of the unit surface normal vector (n) with the unit vector from the
associated surface node to the central node (v).

 The normal offset direction is calculated based on the position of the near-surface
node in the array of neighboring nodes. (For the node in the first viscous layer, the
near-surface node will be the associated surface node; for a node in the second layer,
the near-surface node will be the associated node from layer one, etc. For a node with
six neighbors, if the near surface node is first in the neighbor-array, the offset will be
away from the 0-deg position; if the near-surface node is second in the neighbor-array,
the offset will be away from the 60-deg position, etc.)

 The initial lateral offset direction is determined to be the normal offset direction 90 deg.
(If the cross product is negative, this will effectively be -90 deg.)

 At each computational space adjustment iteration the normal offset is adjusted by 10%
of its original value to target in on the offset that will give the proper off-body spacing.

 At each computational space adjustment iteration the lateral offset is adjusted by the
new cross product multiplied by a relaxation parameter to target a position normal to
the no-slip surface. (A relaxation factor of 0.1 has been found to give good results but
might need to be decreased as the initial off-body spacing gets closer to the viscous
surface.)

AEDC-TR-10-T-36

51
Statement A: Approved for public
release; distribution is unlimited.

When the algorithm just described is implemented and applied to the rough airfoil, the results
shown in Figs. 48 and 49 are achieved.

Figure 47. Rough Airfoil Mesh Smoothed Using Iteratively Adapted Computational Space

in Viscous Region

Figure 48. Close-Up of Smoothed Viscous Region Near Rough Airfoil Surface

5.3 VISCOUS NACA0012 RESULTS

To further explore the Winslow equations using iteratively adapted offset computational space,
the NACA0012 airfoil was employed. The full domain surrounding the NACA0012 airfoil is
shown in Fig. 50. A close-up of the original mesh is shown on the left side of Figs. 51 and 52.
The mesh that was used as the starting point for the smoothing was essentially an inviscid
mesh; however, the mesh was generated using extrusion off the airfoil surface so that the
connectivity was amenable to treating the nodes in the viscous region as viscous layers.

The viscous region surrounding the NACA0012 airfoil was specified to have five viscous layers,
and an off-body spacing and geometric progression factor were also specified. (These values

AEDC-TR-10-T-36

52 Statement A: Approved for public
release; distribution is unlimited.

are specified as inputs in a viscous parameter file read in by the code.) Once all of the viscous
region parameters were specified, the iteratively adaptive Winslow smoothing algorithm was
applied to the inviscid NACA0012 mesh. The results are shown on the right side of Figs. 51 and
52. Figures 51 and 52 illustrate that the iteratively adaptive Winslow algorithm is doing an
admirable job of meeting the viscous mesh requirements (i.e., mesh spacing sufficient to
capture a viscous boundary layer and orthogonality of nodes in progressive layers of the
viscous region).

Figure 49. Inviscid Domain Surrounding NACA0012 Airfoil

Figure 50. NACA0012 Airfoil Before and After Smoothing

AEDC-TR-10-T-36

53
Statement A: Approved for public
release; distribution is unlimited.

Figure 51. Close-Up of NACA0012 Airfoil Before and After Smoothing

5.3.1 Rotation and Translation

The Winslow elliptic smoothing equations using an iteratively adaptive computational space
algorithm were tested on situations where an airfoil (the NACA0012) was moved around within
the domain. The airfoil was rotated, translated, and then both rotated and translated
simultaneously. In any of the cases, the mesh can start out as viscous, inviscid, or even an
unviable mesh with grid crossing and negative volumes. The Winslow equations will cause the
mesh to conform to the new position and orientation of the airfoil, and the offset computational
space will maintain the viscous layer regardless of orientation. The results from the mesh
movements can be seen below in Figs. 53 through 55.

Figure 52. NACA0012 Rotation Using Winslow Iteratively Adaptive Computational Space

Algorithm

AEDC-TR-10-T-36

54 Statement A: Approved for public
release; distribution is unlimited.

Figure 53. NACA0012 Translation Using Winslow Iteratively Adaptive Computational

Space Algorithm

Figure 54. NACA0012 Rotation and Translation Using Winslow Iteratively Adaptive

Computational Space Algorithm

AEDC-TR-10-T-36

55
Statement A: Approved for public
release; distribution is unlimited.

5.3.2 Airfoil Shape Modification

The next area to be explored was how the equations behaved on a deforming airfoil surface.
This issue has many practical applications to parametric design where it may be required that
many designs be examined, but manually generating meshes for each design would be
prohibitively expensive.

In many cases, the exact camber of an airfoil (for example) will not be known a priori. A design
engineer might want to try many different incremental designs. However, the requirement that a
mesh be generated for each design could potentially be significantly detrimental to the design
process. By employing the Winslow equations using iteratively adapted offset computational
spaces, no additional direct mesh generation would be required. The surface can be
significantly deformed from its original shape and the smoothing equations will conform the
surrounding mesh to the new shape and maintain the original off-body spacing and desired
geometric progression. An example of this is shown in Fig. 56.

Note that even though significant grid crossing occurs when the airfoil shape is modified
(second illustration in Fig. 56) the iteratively adaptive Winslow algorithm is still able to generate
a viscous grid with the desired characteristics.

AEDC-TR-10-T-36

56 Statement A: Approved for public
release; distribution is unlimited.

Figure 55. Viscous Mesh Conforming to a Deforming Surface

5.3.3 Change in Reynolds Number

Another powerful application of the iteratively adaptive Winslow smoothing algorithm would be
in a case where the required off-body spacing was changing. This is something that is virtually
guaranteed to be an issue in any kind of testing environment because it will always be

AEDC-TR-10-T-36

57
Statement A: Approved for public
release; distribution is unlimited.

necessary to explore properties at different Mach numbers and atmospheric conditions. As
these conditions change, the required off-body spacing changes as well. The viscous smoothing
algorithm has the ability to quickly and efficiently change the off-body spacing or geometric
progression of the viscous layers to accommodate changes to the flow characteristics with very
little (or none, if the offset is coupled to the flow solution) manual adjustment to the mesh.
Results are demonstrated below where the mesh starts out having inviscid properties and is
then adjusted to accommodate different flow conditions.

The viscous mesh surrounding a NACA0012 airfoil that was seen in the previous examples of
this section has an off-body spacing (s) of 0.010. For a y+ of 100 and a Reynolds number of
20,000 (and using a reference length of 1.0) this off-body spacing would be sufficient to yield 1
grid point in the laminar sublayer (Ref. 16) and thus make this an adequate mesh for examining
a viscous flow in a very low-speed region using wall functions. The NACA0012 airfoil mesh at
these conditions is shown below in Fig. 57.

Figure 56. Mesh with Off-Body Spacing of s = 0.01 (y+ = 100, Re = 20,000)

The mesh shown in Fig. 57 would only be sufficient for capturing a boundary layer on extremely
low-speed flows. If the speed was increased five-fold (resulting in a corresponding five times
increase in the Reynolds number) the required off-body spacing for the same y+ (y+ = 100)
would now be: s = 0.00233. Using the iteratively adapted computational space Winslow
equations, no new mesh would need to be manually generated. A simple input change
specifying the new off-body spacing would be sufficient to generate a new mesh with the
required characteristics. (It might also be necessary to adjust relaxation factors to the
smoother.) A mesh with characteristics necessary to analyze the flow at the new higher
Reynolds number is shown in Fig. 58, and a close-up comparison of the two meshes, along with
the original inviscid mesh, is shown in Fig. 59.

AEDC-TR-10-T-36

58 Statement A: Approved for public
release; distribution is unlimited.

Figure 57. Mesh with Off-Body Spacing of s = 0.00233 (y+ = 100, Re = 100,000)

Figure 58. NACA0012 Mesh Comparison at Varying Reynolds Numbers

AEDC-TR-10-T-36

59
Statement A: Approved for public
release; distribution is unlimited.

6.0 REFINEMENT

Adaptive mesh refinement (AMR) is utilized to manipulate a mesh in such a way that the mesh
is able to effectively capture the required flowfield characteristics while keeping the number of
mesh elements below the point where computational expense becomes prohibitive. AMR is
carried out by adapting the mesh such that particular regions of the mesh are better suited to
capture some important flow property or properties. This is done by refining the mesh in areas
where the properties of interest have large gradients while keeping the size of the mesh
elements relatively large in regions where the flow properties are not changing as rapidly with
respect to space.

Three flowfield variables were examined for the purpose of refining (and also derefining) a
mesh: pressure, velocity magnitude, and Mach number. The CFD code that was incorporated
into the AMR process was a node-based solver. The flow variables are stored at the nodes, and
the gradients are calculated using the technique described in Section 2.

6.1 UNSTRUCTURED ELEMENT DIVISION

The adaptation scheme that is implemented for the work described in this section is an edge-
based scheme that is able to mark and refine the edges of an element in several ways. An
adaptation function is used to determine which edges of which elements should be refined.
Each edge consists of two nodes; a simple average of the gradients on the ends of the edge is
not a favorable option because in the event where the gradients were high, but in opposing
directions, they would cancel each other out. The adaptation function that is shown as Eq. (6.1)
alleviates this problem.

 1 2 Pˆ ˆr r
Af l

2
   

 (6.1)

In Eq. (6.1), 1 is the gradient at the first node, 2 is the gradient at the second node, r̂ is the
edge vector, and pl is a parameter that is introduced to more efficiently handle length scales. If

pl is not included, regions in the flow where there are sharp features, such as a shock wave, will
never reach a point where the adaptation function is not above some value where refinement is
to take place. In fact, for a shock the gradient will actually increase as the cells are refined
because the discontinuity remains but now occurs over a smaller distance. The ways in which
an element can be marked are shown in Fig. 60, and the ways in which an element can be
refined are shown in Fig. 61.

AEDC-TR-10-T-36

60 Statement A: Approved for public
release; distribution is unlimited.

Figure 59. 8 (23) Ways to Mark a Triangle

Figure 60. 11 Possible Ways to Split a Triangular Element

Because the refinement process is edge-based, there are 8 (i.e., 23) ways to mark a triangular
mesh element and additional ways to split it up because not all of the markings result in a
unique refinement. Note that in 3D there are 6 edges for a basic element (a tetrahedron), so
there are 64 (i.e., 26) ways to mark the element and additional ways to split it up.

6.2 STATIC REFINEMENT

The first case that was examined for the purpose of demonstrating solution-based AMR was a
transonic case involving a NACA0012 airfoil in a Mach 0.95 flow. At Mach 0.95 and zero angle
of attack, the flow speed increases to about Mach 1.3 as it traverses the airfoil and then shocks
down at the tail. However, the flow does not quite shock down to subsonic at that point and
remains slightly supersonic for several chord lengths behind the airfoil. The flow then shocks
down below the speed of sound, causing the airfoil to exhibit a distinct sonic line or “fishtail

AEDC-TR-10-T-36

61
Statement A: Approved for public
release; distribution is unlimited.

shock” in its wake. This is illustrated in Fig. 62. The objective of examining this case was to
adapt the original mesh (shown in Fig. 62) to the flow with the hope of capturing the shock
waves coming off the airfoil and the secondary shock behind it.

Figure 61. Flowfield Around a NACA0012 Airfoil at Mach 0.95 Along with the Initial

Unrefined Mesh

Three different flow parameters were examined: Mach number, pressure, and velocity
magnitude. Successful adaptation can be performed with all three parameters, but Mach
number is focused on here because it captured some elements of both pressure and velocity.
Shown below in the images comprising Fig. 63 is a progression of the grid over six refinement
passes. Figure 62 was generated using Mach number as the flow parameter for which
adaptation was performed. Figure 62 shows that the adaptation algorithm successfully captures
the shock coming off the airfoil and the secondary shock behind it.

AEDC-TR-10-T-36

62 Statement A: Approved for public
release; distribution is unlimited.

Figure 62. Progression of Grid Refinement/Derefinement

6.3 DYNAMIC REFINEMENT

After a steady-state case was performed, dynamic moving body cases were also examined.
These cases used both AMR and elliptic smoothing to generate quality meshes at each step in
the refinement process. In addition to refinement, derefinement was also implemented into the
process with limited success. Derefinement is difficult to implement because, unlike refinement
where overrefining a mesh may hurt performance but will probably not be significantly
detrimental to a solution, aggressive derefinement can easily completely decimate a mesh to
the point where no solution can be generated. However, derefinement can be important, as
illustrated by the case described below which involves a NACA0012 airfoil at Mach 0.8.

AEDC-TR-10-T-36

63
Statement A: Approved for public
release; distribution is unlimited.

Figure 63. NACA0012 Airfoil at 0 deg Angle of Attack and at 10 deg Angle of Attack

The solutions to the flow over a NACA0012 airfoil at the two positions shown in Fig. 64 show
that the shock moves significantly on the body of the airfoil when the airfoil is rotated. Figure 64
shows the case where the grid is adapted based on Mach number at zero angle of attack and
the airfoil is then rotated -10 deg. At -10 deg angle of attack the shock is significantly further
back on the body of the airfoil compared to the 0-deg case. If a solution on the initial mesh is
used to perform adaptation and the airfoil is then rotated, Winslow smoothing will allow a valid
mesh to be created for the new position, but if no derefinement is performed, the refinement
from the 0-deg case will remain, even though the shock is no longer in this vicinity. The wasteful
nature of this residual refinement is illustrated in Fig. 65.

Figure 64. Grid Adaptation on Rotated Airfoil

The final case that was examined was that of a rotating airfoil. A NACA0012 airfoil, this time at a
Mach number of 0.8, was rotated about the quarter chord, and the mesh was refined at each

AEDC-TR-10-T-36

64 Statement A: Approved for public
release; distribution is unlimited.

rotation step. The airfoil was rotated up 1.5 deg, rotated back to zero, rotated down 1.5 deg, and
then rotated back to the initial position.

The images in Fig. 66 show the refinement progression as the airfoil is pitched up and then
down and then back up to the original position. For this case the derefinement capability was
used very sparingly, and thus as expected there is a significant residual refinement as the angle
of attack changes. More aggressive derefinement was tried, but the mesh in the upstream
region, which had negligible gradients compared to the flow around the body, was always
adversely affected. Despite the appearance of residual refinement and the associated
degradation of computational efficiency, Fig. 66 shows that the shock is being well refined and
that the smoothing technique is working well to rotate the interior points of the mesh as the
airfoil surface boundary is rotated.

Figure 65. NACA0012 Refinement with Varying Pitch (a)

AEDC-TR-10-T-36

65
Statement A: Approved for public
release; distribution is unlimited.

Figure 65. NACA0012 Refinement with Varying Pitch (b)

7.0 OPTIMIZATION

An efficient way to perform a design optimization on a 2D mesh is to couple an optimization
code with a 2D CFD solver and a mesh movement/refinement code. The concept of
optimization is based on finding a minimum of some function. There are several methods for
finding minimums of a function; one such method is the Newton-Raphson technique. A design
reaching an optimum state implies that the function for which the optimization has been
performed has been minimized and the derivates of the function are zero. A simple one-variable
example, such as that shown in Fig. 67, would be the function 2f (x) x 2  . The minimum can
be found at x 2  at which point f (x) 0  . For a practical optimization, the function that is
minimized is a cost function. The cost function, which is discussed below, will generally be a
multivariate function driven by multiple design variables.

AEDC-TR-10-T-36

66 Statement A: Approved for public
release; distribution is unlimited.

Figure 66. One Variable Example of a Function and Its Derivative

A common optimization method, such as used by the design code Port (developed by Bell
Laboratories) and Dakota (developed by Sandia National Labs) is a trust region method. The
trust region algorithm approximates only a certain region (the so-called trust region, which is
locally approximated as quadratic) of a function as opposed to the entire function. When an
adequate model of the function is found within the trust region, the region is expanded. The
optimization tool used for the study described herein is Port. The source code for Port is freely
available, and certain subroutines were stripped out to use directly with an optimization driver
code that coupled the optimization tool with the CFD and mesh manipulation codes.

The optimization libraries from Port generally operate as black boxes (though the source is
available to examine or modify if required). The specific port Library that was called by the driver
routine was called DMNGB. This subroutine seeks a parameter vector (a vector of all of the
design variables) that minimizes a continuously differentiable function (the cost function) subject
to bound constraints. The caller provides a subroutine to compute the cost function and a
second subroutine to compute the gradients of the cost function.

It is not the root of the function itself that is being sought, but rather roots of its gradients. To find
these roots, a second derivative (Hessian matrix for a multivariate function) is necessary. Within
the Port code, the Hessian (if it is not provided directly) is approximated by a secant (quasi-
Newton) updating method.

7.1 COST FUNCTION

For the purposes of optimization, the function that is to be minimized is known as a cost function
or an objective function. It is this function that is used to capture the relationship between the
design variables and the design goals. The cases that were examined for this study were
external flows over a naca0012 airfoil. The main parameters of interest were lift and drag. The
cost function that was used to drive the design is shown as Eq. (7.1).

    
2 2

L DI W L L* W D D*    (7.1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

df 0
dx



2f (x) x 2 

AEDC-TR-10-T-36

67
Statement A: Approved for public
release; distribution is unlimited.

Where: I = cost

 WL = lift coefficient (weight)

 L = lift

 L* = target lift

 WD = drag coefficient (weight)

 D = drag

 D* = target drag

7.2 DESIGN VARIABLES AND SENSITIVITY DERIVATIVES

A design variable is the aspect of the design that is being evaluated and modified to drive a
design toward a certain behavior. There are infinite possibilities for what can be used as design
variables. For an airfoil, typical design variables could be camber, thickness, angle of attack, or
individual positions on the airfoil. It is common to denote the design variable as i .

For the study discussed here, the shape of the airfoil was manipulated directly by choosing the
design variables to be the y coordinates of points on the airfoil surface. An important part of the
optimization process is determining how each of the design variables affects the cost function.
This is done through sensitivity derivatives, which are the partial derivatives of the cost with
respect to each design variable (i.e., the change in the cost while perturbing a single design
variable and keeping all of the other design variables constant).

The sensitivity derivatives are written as
i

I





.

Three methods were explored for generating sensitivity derivatives. They are:

 Finite Difference

 Forward Mode Differentiation

 Reverse Mode Differentiation

7.2.1 Sensitivity Derivatives Using Finite Difference

The most straightforward way to generate sensitivity derivatives is to use a finite difference
approach. In this case, at each iteration (k) in the design process the cost function will be
calculated using Eq. (7.2).

    
2 2

(k) L (k) D (k)I W L L* W D D*    (7.2)

The derivatives of the cost function with respect to each of the design variables are found using
the chain rule as:

   L D
i i i

I L D2w L L* 2w D D*
  

  
   

  

AEDC-TR-10-T-36

68 Statement A: Approved for public
release; distribution is unlimited.

Using the finite difference approach, each of the partial derivatives is found by perturbing i by
a very small amount (). The design derivatives are discretized and calculated as:

   (k) (k 1) (k) (k 1)
L (k 1) D (k 1)

i i i(k)

L L D DI 2.0*w L L* 2.0*w D D*
  

 

 

 
   

  

This is the partial derivative with respect to a single design variable, so it must be performed for
each design variable while holding all of the other design variables constant. This can be very
computationally expensive because at each iteration in the design cycle, a flow solve is required
to get the cost at iteration (k) and n mesh-movements, and n flow solves are required to
generate the sensitivity derivatives where n is the number of design variables.

7.2.2 Sensitivity Derivatives Using Forward Mode Differentiation

As mentioned in the section above, a problem with using finite difference to get the sensitivity
derivatives is that it requires so many CFD flow solves (n+1 where n is the number of design
variables) per design cycle. One way to alleviate this requirement is to use forward mode
differentiation (also known as direct differentiation or automatic differentiation). Using this
method still requires the same amount of mesh movements at each design iteration, but
requires only one full flow solve. For a case that is only concerned with lift, the cost function is:

       

 

2 2 2 2
L D

2

I C * L L* C * D D* 1.0* L L* 0.0* D D*

I L L*

       

 

Lift, in turn, is the integral of vertical pressure forces over the entire wetted surface area of the
airfoil and is calculated as the sum of the contributions to lift at each point on the airfoil, which is
calculated using Eq. (7.3).

 x yL F n sin F n cos    (7.3)

In Eq. (7.3)  is the angle of attack of the airfoil, F is the force on the airfoil at a point, and nx and
ny are the surface normals of the airfoil at that point. Cost is a function of lift, and lift is a function
of other variables, which are either directly or indirectly related to the state variables (flow
variables) or the physical geometry variables (mesh variables). The derivatives for the state
variables and the mesh variables with respect to the design variables can be found directly by
differentiating the code using the chain rule.

The starting point is the discrete residual of the system, which will be zero when the system is
fully converged and the flow solution has reached a steady state. The residual of the system is a
function of the design variables, the flow variables (which are functions of the design variables),
and the mesh variables (which are also functions of the design variables). The residual of the
system can be written as R(Q(),X(),) 0    . Using the chain rule, the derivative of the
residual for each of the design variables is:

i i i i

dR R R Q R X 0
d Q X   

            
                      

 (7.4)

AEDC-TR-10-T-36

69
Statement A: Approved for public
release; distribution is unlimited.

Here, as well as throughout the remainder of this section, the derivatives in square brackets
represent an array of values while the derivatives in curly brackets represent a vector of values.
The partial derivative of the residual will be zero because all of the design variables are affecting
the residual through the mesh and state vectors and not directly (through, for example, varying
Mach number). This allows Eq. (7.4) to be rearranged into Eq. (7.5), which is the forward mode
system equation.

i i

R Q R X
Q X 

         
               

 (7.5)

The derivates of the mesh node coordinates with respect to the design variables are referred to

as the mesh sensitivities. These are dented as
i

X





 and are found by differentiating the mesh

movement code. Once the mesh sensitivities are found, Eq. (7.5) is used to find
i

Q





. Once

i

X






and
i

Q





are known, the effect that the design variables have on any other variables in the

system (effects on surface normals, lift, drag, etc.) can be found using the chain rule. Note that
R
Q



is the partial derivative of the residual (i.e., the flux between elements in the mesh) with

respect to the state vector while keeping the mesh constant. This is known because these

values are the flux Jacobian values of the original mesh at steady state. R
X



 is not found

directly, but rather the entire right-hand side of Eq. (7.5) is found as
i Q fixed

R





once

i

X





is known.

7.2.3 Mesh Movement and the Complex Winslow Equations

In order to get the sensitivity derivatives,
i

I





, the mesh sensitivities,

i

X





, are needed.

i

X





is a

vector of equations for each design derivative. It will have a potentially different value at each
point in the flowfield, and it represents the change in position of every mesh point in the flowfield
caused by a change in one of the design variables. In 2D the expanded vector for the mesh
sensitivities would look like Eq. (7.6).

 i

i

i

x
X

y






 
   
 
 
 

 (7.6)

One way that the mesh sensitivities can be found is by utilizing the mesh movement code. The
design variables for this study were the y coordinates of points on the airfoil surface. In order to
determine the mesh sensitivities, each of the design variables is tweaked by some small amount
() and the mesh movement code is run to see how each of the points in the flowfield responds.

AEDC-TR-10-T-36

70 Statement A: Approved for public
release; distribution is unlimited.

One problem that can arise when generating mesh sensitivities in this manner is that when the
perturbation is very small it can result in large subtractive cancelation error. For example,
consider a case where a central difference was used. (For this example, this would be
analogous to perturbing the design variable up by some small amount (y + y), down by
some small amount (y - y), and then looking at how the points in the field reacted.)

new original

new originali

x x
2 yX

y y
2 y



 
 

  
 
 

 

To illustrate the problem, consider the Taylor series expansion for a central difference scheme:

   

   

2 32 3

2 3

2 32 3

2 3

y yf f ff (y y) f (y) y
y y 2! y 3!

y yf f ff (y y) f (y) y
y y 2! y 3!

   
       

  

   
       

  

Subtracting the second equation from the first and ignoring higher order terms gives the
following central difference scheme for a first derivative:

f f (y y) f (y y)
y 2 y
    


 

 (7.7)

Unfortunately, if y is very small, y+y and y-y look the same to the computer and error can
quickly increase. Experience has shown that subtractive cancelation error starts to increase as
y approaches the square root of machine zero (~E-8).

One way to reduce the subtractive cancelation error is to go into the complex plane. An
alternate way of computing the first derivative of a function is to consider that function in
complex space and manipulate the complex Taylor series expansion. If a function is perturbed
by a small amount   in the complex plane, the complex Taylor series is:

   
2 3 3

2
2 3

f f ff x i f x i i ...
x x x 3!


  

  
     

  

Rearranging and ignoring higher order terms gives:

   
2 3 3

2
2 3

real part imaginary part

f f ff x i f x h i
x x x 3!


 

   
     

   

The derivative, then, can be calculated as:

AEDC-TR-10-T-36

71
Statement A: Approved for public
release; distribution is unlimited.

 

 
 

3 3

3

2

f f Im f x i
x x 3!

Im f x if
x


 


 



 
      

    
 



Ignoring the higher order terms gives the alternate formulation for calculating a first derivative of
a function, which is shown as Eq. (7.8).

 Im f x if

x




    



 (7.8)

In order to implement the alternated formulation, the mesh movement code is modified to
operate in complex space and the Winslow smoother is extended to handle a complex (i.e.,
having a real and imaginary part) mesh. The mesh file is modified such that each node has a
real and imaginary part for its x and y coordinate. The imaginary part of each of the nodes is
zero with the exception of the node that would be used as the design variable. The design
variable node now has a y coordinate that had an imaginary part .

When the mesh movement code is executed in complex mode, it no longer physically moves
the mesh, but rather calculates a complex part for each of the coordinates. The complex part of
each of the coordinates is divided by  to generate the mesh sensitivities for a given design
variable. If a point near the middle of the top surface of the airfoil is perturbed by a small amount
(d1.0e-10 in the complex plane, the magnitude of the complex part of points in the
flowfield can be seen (Fig. 68).

Figure 67. Magnitude of Mesh Sensitivities

AEDC-TR-10-T-36

72 Statement A: Approved for public
release; distribution is unlimited.

Once the mesh sensitivities are known, the sensitivities of the state variables can be found by
solving Eq. (7.5), and the sensitivity derivatives can be calculated and fed to Port to drive the
optimization. For each design iteration, the mesh movement code must be executed a number
of times equal to the number of the design variables, but a full CFD flow solve will only have to
be executed once. For each design variable the mesh movement code will be executed to
generate the mesh sensitivities, and then a linear system will be solved to generate the state
vector sensitivities.

7.2.4 Sensitivity Derivatives Using Reverse Mode Differentiation

A third method for calculating the sensitivity derivatives is to use reverse mode differentiation.
For forward mode differentiation, each of the design variables is perturbed, one at a time, and
then the mesh movement code is executed to get mesh sensitivities. Once the mesh
sensitivities are known for a given design variable, a linear system is solved to get the
sensitivities of the state variables, and from this knowledge the sensitivity derivatives are found.

Forward mode differentiation yields the most information in that once the state variable
sensitivities are determined, derivatives for anything else can be obtained. Although direct
differentiation yields a significant amount of information, it can be very costly in cases where
there are many design variables because Eq. (7.5) must be solved for each design variable. For
cases where there are many design variables, a more efficient way can be to use reverse mode
differentiation by employing adjoint methods.

For this method, the cost function is augmented so that the residual of the solver is included as
a constraint using Lagrange multipliers. The cost function is a function of the state variables and
the mesh: I(Q(),X(),)   . The augmented equation is:

T
cI(Q(),X(),) I (Q(),X(),) R(Q(),X(),)         

In the equation above, cI is the original cost and  is a vector of Lagrange multipliers (which are
arbitrary). At steady state, because R = 0, cI I . Taking the derivative of I with respect to one
of the design variables gives the augmented sensitivity derivative for a single design variable,
which is shown as Eq. (7.9).

 Tc c c

i i i i i i i

I I IdI Q X R R Q R X
d Q X Q X      

         
      
          

 (7.9)

Equation (7.9) is the equation for a single design variable (i). The equation for the entire
system can be manipulated to get:

T T T TT T
c c c

i

I I IdI Q R X R X R
d Q Q X X     

                         
                                                  

AEDC-TR-10-T-36

73
Statement A: Approved for public
release; distribution is unlimited.

i

Q





is unknown, but since  is arbitrary,

T
cI R

Q Q

    
   

    

 can be solved such that

T T
c

i

IQ R
Q Q

      
     

       

 is eliminated. This results in the adjoint equation, shown as Eq. (7.10).

T

cIR 0
Q Q

   
    

    
 (7.10)

Once the vector of Lagrange multipliers is determined, the sensitivity derivatives can be
calculated using the augmented cost function for the entire system, shown as Eq. (7.11).

T T T T

c cI IdI X R X R
d X X    

                
                               

 (7.11)

For a case where all of the design variables are affecting the cost directly through the state and
mesh variables, this equation can be simplified and written as Eq. (7.12).

T
Tc

Q fixed

IdI X R
d X  

     
     

       (7.12)

The adjoint equation is a linear system; thus, for the cost of solving a linear system followed by
a matrix-vector multiply for each design variable, the cost function with respect to all design
variables can be obtained. Therefore, the adjoint method is efficient when there are many
design variables and few cost function constraints (e.g., lift and drag).

7.3 SUMMARY OF SENSITIVITY DERIVATIVES

Sensitivity derivatives
i

I


 
 
 

for the optimization can be found three different ways:

 Finite Difference

 Forward Mode Differentiation (AKA Direct Differentiation)

 Reverse Mode Differentiation (AKA Adjoint Method)

Finite difference is the most straightforward, but it is computationally the most expensive
because for n design variables it requires n mesh movements and n+1 flow solves at each
iteration in the design cycle.

Forward mode differentiation improves on the computational efficiency because at each iteration
in the design cycle it requires n mesh movements but only requires one flow solve and n linear

system solutions to solve
i i

R Q R X
Q X 

         
                

 for
i

Q





.

AEDC-TR-10-T-36

74 Statement A: Approved for public
release; distribution is unlimited.

If there are many design variables, this can still get expensive since the linear system is solved
in an iterative fashion (using a point iterative scheme for this study) for each design variable, i .

The most computationally efficient way to solve for the sensitivity derivatives is to use reverse
mode differentiation. In this case, adjoint methods are employed so that only one linear system
solve is required. Reverse mode differentiation requires n mesh movements, one flow solve,

and one linear system solve to solve
T

cIR
Q Q

   
        

for the vector of Lagrange multipliers

  . It also requires n matrix vector multiplies to solve:

T T T T
c cI IdI X R X R

d X X    

                 
                               

This will generally be more efficient than solving multiple linear systems unless the number of
cost functions is much greater than the number of design variables.

8.0 CONCLUSIONS

There are many ways that a region that is to be analyzed using computational methods might
be discretized. This report focused on breaking up a region of interest using unstructured grid
methodology (as opposed to structured grid methodology, where the breakup of the domain
reflects some type of consistent geometrical regularity). Although the focus was on unstructured
meshes, many of the algorithmic and mathematical techniques found herein owe their origins to
structured methods. The bulk of this report focused on unstructured mesh smoothing using the
Winslow equations; adaptive mesh refinement and optimization were discussed as well.

The Winslow elliptic smoothing equations, which were first applied to structured meshes as far
back as the 1960s, have started to become powerful tools for smoothing unstructured meshes
as well. However, no implicit computational space exists for unstructured meshes, and the
computational space must be explicitly defined. Because the unstructured mesh connectivity
needs to be explicitly defined and the valence count (the number of connected nodes or
neighbors) varies throughout a domain, no theory exists to generate a general overarching
computational space that reflects a consistent geometrical regularity as was done with
structured meshes. This difficulty was alleviated when it was determined that it was not
necessary for the entire computational mesh to be constructed as an overarching system of
nodes and elements, but rather each node in computational space could be treated as an
individual virtual control volume and coupled only though the coordinates in physical space,
which were treated as free dependent variables.

Using these loosely coupled virtual control volumes as the unstructured computational space,
the Winslow elliptic smoothing equations allow interior mesh points to be moved and smoothed
to conform to a moving surface or improve a static mesh. Conventionally, the unstructured
computational space for each of the nodes formulated in this manner is surrounded by
neighbors using equal angles and equal edge-lengths, and it is necessary that the central node
in each virtual control volume be fully surrounded by neighboring nodes for the computational
template to be complete. This makes the Winslow equations ideal for smoothing nonboundary
nodes in inviscid meshes because the equations drive the mesh elements to display an isotropic
behavior. However, the convention implementation of the Winslow equations is not well suited

AEDC-TR-10-T-36

75
Statement A: Approved for public
release; distribution is unlimited.

for nodes on boundaries or nodes in viscous regions. Research detailed in this report addressed
these limitations.

Traditionally, boundary points were held static in their original position, and only interior mesh
points were permitted to move. However, if a moving surface was in close proximity to a static
surface, the mesh quality could be significantly degraded. Because the connectivity of the mesh
was not changing, the mesh elements were often not able to maintain low skew as they were
stretched to conform to the new surface positions. The problem with applying the Winslow
equations to a point on a surface is related to the virtual control volume of the surface node in
computational space. For the equations to be properly solved, the virtual control volume needs
to have a complete unbroken stencil of neighboring nodes. For a node on a surface, an
unbroken stencil did not exist. This limitation was remedied by utilizing ghost points outside the
proper physical mesh domain. Several methods for placing the ghost points were explored, and
it was determined that the best results occurred by implementing a reflection technique, which
reflected a composite interior-neighbor location across a line tangent to the boundary at the
location of the boundary node for which a dynamic floating position was desired.

The floating-surface Winslow algorithm was tested on several geometries. The first case was a
flat plate in a domain where the outer boundary was relatively close to the flat plate surface. The
flat plate was taken through a full range of movements that included translation, rotation, and
even the deformation of the surface. Valid meshes were generated for all cases. The final case
that was examined to explore the effects of applying the Winslow equations to the boundaries
was to apply Winslow elliptic smoothing to a 30P30N multi-element high-lift airfoil. The airfoil
was pitched 30 deg, and the surrounding mesh was smoothed using the Winslow equations to
adapt the flowfield mesh to the new airfoil surface position. The mesh was smoothed using both
a static outer boundary and a floating-point outer boundary. Good results were generated and
the smoothed mesh was tested further by using it to generate a transonic flow solution.

Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of the Winslow
equations applied to a boundary, it made sense to look at how two surfaces that were close
together behaved if one of the surfaces was moved relative to the other. For this, the slat at the
front of the airfoil was rotated from its original extended (high-lift) position to a retracted position.
The mesh was smoothed at each of the two slat rotation steps. The first case that was
examined was using static nodes on all of the airfoil boundaries. When this was done, the mesh
became highly skewed in the region between the slat and the central airfoil position. The next
case that was examined involved letting the boundary points on the surface of the central airfoil
section float as the slat was rotated. This gave a much better mesh near the leading edge of the
central airfoil section.

A conventional implementation of the Winslow equations involves constructing virtual control
volumes for the computational space for each node using equal angles and equal edge-lengths.
By implementing the computational space in this way, the Winslow equations smooth the
physical mesh such that the modified (i.e., smoothed) mesh is highly isotropic and thus ideally
suited for an inviscid flow. However, a viscous mesh near a no-slip wall is highly anisotropic and
is thus in direct opposition to the goals of the unmodified Winslow equations. A successful
methodology for applying the Winslow equations to viscous regions of unstructured meshes was
to use an iteratively adapted computational space for each of the nodes in the viscous region.
This technique allowed a mesh with an amenable connectivity structure to be smoothed in such
a way that it could match a desired viscous profile based on an initial off-body spacing and
geometric progression of the viscous layers.

AEDC-TR-10-T-36

76 Statement A: Approved for public
release; distribution is unlimited.

The Winslow elliptic smoothing equations using an iteratively adaptive computational space
algorithm were tested in situations where an airfoil (the NACA0012) was moved around within
the domain. The airfoil was rotated, translated, and then both rotated and translated
simultaneously. In any of the cases, the mesh can start out as viscous, inviscid, or even an
unviable mesh with grid crossing and negative volumes. The Winslow equations cause the
mesh to conform to the new position and orientation of the airfoil, and the offset computational
space is able to maintain the viscous layer regardless of orientation. The technique was also
explored on a deforming airfoil surface, which has many practical applications to parametric
design where it may be required that many designs be examined, but manually generating
meshes for each design would be prohibitively expensive. Again, a proper viscous mesh was
generated.

A final application of the iteratively adaptive Winslow smoothing algorithm was a case where the
required off-body spacing was changing. This is something that is guaranteed to be an issue in
any kind of testing environment because it will always be necessary to explore properties at
different Mach numbers and atmospheric conditions. As these conditions change, the required
off-body spacing changes as well. It was shown that the iteratively adaptive Winslow smoothing
algorithm has the ability to quickly and efficiently change the off-body spacing or geometric
progression of the viscous layers to accommodate changes to the flow characteristics.

Adaptive mesh refinement (AMR) is utilized to manipulate a mesh in such a way that the mesh
is able to effectively capture the required flowfield characteristics while keeping the number of
mesh elements below the point where computational expense becomes prohibitive. AMR is
carried out by modifying the mesh such that particular regions of the mesh are better suited to
capture some important flow property or properties. This is done by refining the mesh in areas
where the properties of interest have large gradients while keeping the size of the mesh
elements relatively large in regions where the flow properties are not changing as rapidly with
respect to space.

Three flowfield variables were examined for the purpose of refining (and also derefining) a
mesh: pressure, velocity magnitude, and Mach number. AMR was explored on an airfoil that
exhibited interesting “fishtail” shock characteristics, and the shocks were successfully captured.
A dynamic case was also explored where the airfoil oscillated about the zero angle-of-attack line
and the shock’s positions along the airfoil surface were changing. In the dynamic case,
refinement was carried out successfully, but aggressive derefinement had a negative effect on
grid quality, so the mesh became less efficient as it was continually refined.

A shape optimization study was performed in which an optimization code was coupled with a 2D
CFD solver and a mesh movement/refinement code. The concept of optimization, which is
based on finding a minimum of some function, was employed to drive the shape of an airfoil to
exhibit desired characteristics. For this study, the shape of the airfoil was manipulated directly
by choosing the design variables to be the y coordinates of points on the airfoil surface. Three
methods were explored for generating sensitivity derivatives: finite difference, forward mode
differentiation, and reverse mode differentiation. The differences in these three methods were
discussed as well as the benefits and negative aspects of each. It was determined that under
most circumstances the most computationally efficient method was to use reverse mode
differentiation. In this case, adjoint methods are employed so that only one linear system
solution is required.

The research and results described herein significantly expand the possible role of the Winslow
elliptic smoothing equations as related to unstructured mesh manipulation. The methodologies

AEDC-TR-10-T-36

77
Statement A: Approved for public
release; distribution is unlimited.

that were explored make the equations applicable to many common situations in fluid
mechanics for which they traditionally would not have been well suited.

AEDC-TR-10-T-36

78 Statement A: Approved for public
release; distribution is unlimited.

REFERENCES

1. Anderson, John D. Computational Fluid Dynamics, The Basics with Applications. New York,
NY: MGraw-Hill, Inc., 1995. ISBN 0-07-001685-2.

2. Winslow, Alan M. “Numerical Solution of the Quasilinear Poisson Equations in a Nonuniform
Triangle Mesh.” Worcester, MA: Journal of Computational Physics, 1967. Vol. 2, 149-172.

3. Sahasrabudhe, Mandar. “Unstructured Mesh Generation and Manipulation Based on Elliptic
Smoothing and Optimization.” A Dissertation Presented for the Doctorate of Philosophy
Degree. Chattanooga, TN: University of Tennessee at Chattanooga, 2008.

4. Karman, Steve and Sahasrabudhe, Mandar. “Unstructured Elliptic Smoothing Revisited.”
47th Aerospace Sciences Meeting and Exhibit. Orlando, FL: American Institute of
Aeronautics and Astronautics, 2009. AIAA-2009-1362.

5. Masters, James S. “Winslow Elliptic Smoothing Equations Extended to Apply to General
Regions of an Unstructured Mesh.” A Disertation Presented for the Doctor of Philosophy
Degree. Chattanooga, TN: University of Tennessee at Chattanooga, 2010.

6. Carpenter, James G. “Time Accurate Unstructured Grid Adaption in Two and Three
Dimensions.” A Dissertation Submitted to the Graduate Faculty of North Carolina State
University. Raleigh, NC: North Carolina State University, 2007.

7. Cavallo, Peter A and Boker, Timothy J. “Efficient Delaunay-Based Solution Adaptation for
Three-Dimensional Unstructured Meshes.” Dublin, PA: American Institue of Aeronautics and
Astronautics, 2000. AIAA-2000-0809.

8. Stewart, James. Calculus, Third Edition. Pacific Grove, CA: Brooks/Cole, 1995. ISBN 0-534-
21798-2.

9. White, Frank M. Viscous Fluid Flow. Boston, MA: McGraw Hill, 1991. ISBN 0-07-069712-4.

10. Knupp, Patrick M. “Winslow Smoothing on Two-Dimensional Unstructured Meshes.”
Engineering With Computers. Albuquerque, NM: Springer, 1999. Vol. 15.

11. Weisstein, Eric W. “Laplace's Equation.” From MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplacesEquation.html. 2010.

12. Karman, Steve, Anderson, Kyle, and Sahasrabudhe, Mandar. “Mesh Generation Using
Unstructured Computational Meshes and Elliptic Partial Differential Equation Smoothing.”
Reno, NV: American Institute of Aeronautics and Astronautics, 2005. AIAA-2005-0923.

13. www.pointwise.com. Fort Worth, TX: Pointwise, Inc., 2010.

14. Smith, Richard W. and Wright, Jeffrey A. “A Classical Elasticity-Based Mesh Update Method
for Moving and Deforming Meshes.” Orlando, FL: American Institute of Aeronautics and
Astronautics, 2010. AIAA-2010-164.

AEDC-TR-10-T-36

79
Statement A: Approved for public
release; distribution is unlimited.

15. Babuska, I. and Aziz, A.K. “On the Angle Condition in the Finite Element Method.” SIAM J.
Numer. Anal. Philadelphia, PA: Society for Industrial and Applied Mathematics, Apr. 1976.
Vol. 13. pp 214-226.

16. Jones, William T. Gird Spacing Caculator. http://geolab.larc.nasa.gov/APPS/YPlus/.
Langley, VA: NASA Langley Research Center, 2010.

17. Rowland, Todd. “Elliptic Partial Defferential Equation.” From MathWorld - A Wolfram Web
Resource. http://mathworld.wolfram.com/EllipticPartialDifferentialEquation.html. 2010.

18. Thomas, P.D. and Middlecoff, J.F. “Direct Control of the Grid Point Distribution in Meshes
Generated by Elliptic Equations.” AIAA Journal. Reston, VA: American Institute of
Aeronautics and Astronautics, 1979. Vol. 18.

AEDC-TR-10-T-36

80 Statement A: Approved for public
release; distribution is unlimited.

APPENDIX A. METRIC RELATIONSHIPS AND THE JACOBIAN

Partial derivatives with respect to the two-dimensional computational space coordinates  , 

can be written as 






















































y
y

x
x


 and 























































y
y

x
x


. The

coefficients in these equations are referred to as the inverse grid metrics. Using a condensed

form for the derivatives (i.e., x
x








 etc.) the above relationships can be written as the

following system:




































































y

x
yx
yx

 (A.1)

Cramer’s rule allows one to construct the relationship between the grid metrics (x y x y, , ,   )

and the inverse grid metrics (x , x , y , y   ). Using Cramer’s rule, new relationships for the
partial derivatives in physical space shown as Eqs. (A.2) and (A.3) are constructed.

y

y

x yx
x y





 

 















 (A.2)

x

x

x yy
x y





 

 















 (A.3)

In the equations above, the value in the denominator is the Jacobian, which is defined as:

x y

J x y x y
x y
 

   

 

   (A.4)

Using the definition of the Jacobian, Eqs. (A.2) and (A.3) can now be written as follows:

1 y y

x J  
 

   
  

   
 (A.4)

AEDC-TR-10-T-36

81
Statement A: Approved for public
release; distribution is unlimited.

1 x x

y J  
 

   
  

   
 (A.5)

Comparing Eqs. (A.4) and (A.5) to the chain-ruled equations for partial derivatives in physical

space (i.e., x xx
 

 

  
 

  
 and y yy

 
 

  
 

  
) reveals the following relationships:

 x x
1 y y
J   

   

    
   

    
 (A.6)

 y y
1 x x
J   

   

    
   

    
 (A.7)

Combining Eqs. (A.6) and (A.7) into matrix form (shown as Eq. [A.8]) allows for the relationships
between the grid metrics and the inverse grid metrics to be easily seen via inspection.

 x x

y y

y y1
x xJ
 

 

   

 

 

    
       
      

      
       

 (A.8)

x

y
J


 

x

y
J


  

y

x
J


  

y

x
J


 

J x y x y    

It is also necessary to define the inverse of this procedure. The partial derivatives of the physical

variables, which are
x x x

 

 

          
       

          
 and

y y y
 

 

          
       

          
, can be

written as the following system:

AEDC-TR-10-T-36

82 Statement A: Approved for public
release; distribution is unlimited.

x x

y y

x

y

  

 



   
      
         
      

 (A.9)

Applying Cramer’s rule to Eq. (A.9) gives the equations for the partial derivatives in
computational space shown as Eqs. (A.10) and (A.11).

x

y

x x

y y

x

y





 

 











 (A.10)

x

y

x x

y y

x

y





 

 











 (A.11)

The value in the denominators of (A.10) and (A.11) is now the inverse Jacobian, which will be
denoted with a script J (J):

x x

x y y x
y y

 
   

 
  J (A.12)

The equations for the partial derivatives in computational space above can now be written as
follows:

 y x
1

x y
 



   
  

   J
 (A.13)

 x y
1

y x
 



   
  

   J
 (A.14)

Comparing Eqs. (A.13) and (A.14) to the equations for partial derivatives in computational

space, i.e., 






















































y
y

x
x


 and 























































y
y

x
x


, reveals the

following relationships:

AEDC-TR-10-T-36

83
Statement A: Approved for public
release; distribution is unlimited.

 y x
1x y

x y x y   
       

       
        J

 (A.15)

 x y
1x y

x y y x   
       

       
        J

 (A.16)

Combining Eqs. (A.15) and (A.16) into matrix form (shown as Eq. [A.17]) allows for the following
relationships between the grid metrics and the inverse grid metrics (this time utilizing the inverse
Jacobian) to again be easily seen via inspection.

 y x

y x

x y 1x x
x y

y y

 

 

 

 

    
       
              
       

J
 (A.17)

yx




J

xy


 

J

yx


 

J

xy




J

x y y x    J

AEDC-TR-10-T-36

84 Statement A: Approved for public
release; distribution is unlimited.

APPENDIX B. DERIVATION OF WINSLOW EQUATIONS

Elliptic smoothing can be used to generate and improve meshes in physical space. The
equations that are used for the smoothing process are derived from the relationship that exists
between a mesh in physical space and computational space. The Winslow equations were
originally applied to structured meshes. A very simple structured mesh, in both physical and
computational space, can be seen below.

Figure B-1. Physical and Computational Space for a Structured Mesh

The coordinates in two-dimensional physical space are represented as (x,y), and the
coordinates in two-dimensional computational space are represented as (). The mapping
between these two domains is defined with the transformations shown as Eqs. (B.1) and (B.2)
(Ref. 12).

(x, y)
(x, y)

 

 




 (B.1)

x x(,)
y y(,)

 

 




 (B.2)

AEDC-TR-10-T-36

85
Statement A: Approved for public
release; distribution is unlimited.

Elliptic smoothing utilizes elliptic partial differential equations in the form of Poisson's Eq. (B.3)
or the homogeneous Laplace's Eq. (B.4) (Ref. 17).

 2 f (x, y)  (B.3)

2 0  (B.4)

The elliptic smoothing equations are constructed by having a Laplacian operator with respect to
physical coordinates act on the computational coordinates. The result is then set equal to zero if
the Laplace form is desired and set equal to a forcing function if the Poisson form is desired.
The elliptic smoothing equations are conventionally expressed in one of the two forms shown
below:

P-Q Form:

2 2
2

2 2

2 2
2

2 2

P
x y

Q
x y

 


 


 
   

 

 
   

 

 (B.5)

 Form:

 

 

2 2
2

2 2

2 2
2

2 2

x y

x y

 
  

 
  

 
      

 

 
      

 

 (B.6)

These equations are currently cast in physical space and represent the smooth variation of the
computational coordinates in physical space. When the forcing functions are set equal to zero,
the equations convert to Laplace’s equations, which have the property that the average value
over a spherical surface is equal to the value at the center of the sphere. This has the effect of
causing a node to move to the centroid of the nodes to which it is connected. Solutions to
Laplace’s equations also satisfy the maximum/minimum principle, which states that the
dependent variables on the interior of the domain are bounded by the values on the boundary of
the domain. This ensures that the interior grid lines do not cross if the boundaries of the domain
are chosen to be constant and constant gridlines (Ref. 12) as seen in Fig. B-1.

It was noted that the equations in the form shown in (B.5) and (B.6) represent a smooth
variation of the computational coordinates in physical space. However, the computational
coordinates (andare generally known, and it is the values of the physical coordinates (x
and y) that are desired. For the equations to be of practical value, they are transformed to
computational space (i.e., the partial derivatives will be with respect to computational space).
The final transformed equations are referred to as the Winslow equations, the derivation of
which is shown below.

AEDC-TR-10-T-36

86 Statement A: Approved for public
release; distribution is unlimited.

The chain rule for differentiation in multiple variables states that if f f (,)  and

   x, y and x, y     , then the derivative for f is
f f f
x x x

 

 

    
 

    
. This can be

rewritten in operator form as      f f f
x x x

 

 

    
 

    
.

Now, consider the case where f
x





. This gives the equation for the second derivative:

x x x x x x
    

 

            
      

            

Or in condensed notation:

 xx x x x x      

   

   

xx x x x x

1 1 1 1
xx x

1 2 1 1 2 1
xx

J y J y J y J y

J y J J y J y J y J J y J y

   

       

    
 

 
 



   

     

 
 

 

 
 

 

           

    xx 3 3

y y
Jy J y Jy J y

J J
 

          (B.7)

Likewise:

   

   

2 2

x x x x

xx x x x x

1 1 1 1
xx x

1 2 1 1 2 1
xx

x x x x x x

J y J y J y J y

J y J J y J y J y J J y J y

 

   

       

    
   

 

    
 

 
 



   

     

      
    

        

 
 

 

 
   

 

         

    xx 3 3

y y
Jy J y Jy J y

J J
 

            (B.8)

AEDC-TR-10-T-36

87
Statement A: Approved for public
release; distribution is unlimited.

The derivatives of the Jacobian are as follows:

n

J x y y x x y y x
J x y y x x y y x
        

       

   

   

Substituting the values of the Jacobian and the Jacobian derivatives into (B.7) gives:

 

 

2
xx 3

3

y
x y y x y y x y y y x x y y y x y

J
y

x y y x y y x y y y x y x y y y x y
J



                



                 

      

     

Rearranging and combining terms gives:

   2 2 2 2
xx 3

1 x y y y y 2y y y y y x y x 2y y x
J                       
 

Following the same steps for the other terms gives:

   2 2 2 2
yy 3

1 y x x x x 2x x x x x y x y 2x x y
J                        
 

   2 2 2 2
xx 3

1 x y y y y 2y y y y y x y x 2y y x
J                        
 

   2 2 2 2
yy 3

1 y x x x x 2x x x x x y x y 2x x y
J                         
 

Recall that the Laplacian of the computational coordinates are as follows:

     

      

2
xx yy

2 2 2 2 2
3

2 2 2 2

1 y x y x 2 x x y y x x y x
J

x x y y 2 x x y y y x y y

           

           

  



  

        
 

      
 

     

      

2
xx yy

2 2 2 2 2
3

2 2 2 2

1 y x y x 2 x x y y x x y x
J

x x y y 2 x x y y y x y y

           

           

  



  

         
 

      
 

AEDC-TR-10-T-36

88 Statement A: Approved for public
release; distribution is unlimited.

Breaking out the coefficients gives the Laplacians in computational coordinates in the following
form:

 

 

2
3

2
3

1 y x 2 x x x y 2 y y
J

1 y x 2 x x x y 2 y y
J

       

       

      

      

             

              

 (B.9)

 where

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

Now an operator is defined  G as:

 

     2 2 2

2 2G 2  
   

  
  

   
(B.10)

Using the operator G, Eqs. (B.9) now become:

   2
x y3 2

1 1y G(x) x G(y) G(x) G(y)
J J         

   2
x y3 2

1 1y G(x) x G(y) G(x) G(y)
J J         

Define a vector

x
r

y
 

  
 

and these become:

 2
2

1 G(r)
J

      and  2
2

1 G(r)
J

     

Rearranging the above equations slightly gives:

 

 

2 2
x y

2 2
x y

G(x) G(y) J

G(x) G(y) J

  

  

   

   

In Matrix form this is:

2
x y 2

2
x y

G(x)
J

G(y)
  

  

    
     

    

AEDC-TR-10-T-36

89
Statement A: Approved for public
release; distribution is unlimited.

Solving for G(x) and G(y) gives:

1 2
x y2

2
x y

22
y y

2
x xx y y x

G(x)
J

G(y)

G(x) J
G(y)

  

  

  

     



    
      

    

     
           

Using the inverse-Jacobian, derived in Appendix A and shown as (A.12), this becomes:

2 22
y y

2 2
x x

G(x) J
G(y)

   

   

     
   

      J

 y y2 2 2 2 2 2G(x) J J x x 

 
   

 
             

 J J
 (B.11)

 2 2 2 2 2 2x xG(y) J J y y 

 
   

 
              

 J J
 (B.12)

B.1 ZERO FORCING FUNCTION

The desired conditions for smooth interior points using the homogeneous Laplace’s equation is
2 0  and 2 0  . If 2 and 2 are set to zero in Eqs. (B.11) and (B.12), then it follows

that G(x) = 0 and G(y) = 0. Using the definition for G(x) and G(y) shown in Eq. (B.10) gives the
final form of the Winslow equations with no forcing function:

G(x) = 0

G(y) = 0

2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
  

  
  

  
  

  

  
  

  

 (B.13)

 where:

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

B.2 WINSLOW EQUATIONS WITH FORCING FUNCTIONS

Consider Eqs. (B.5) and (B.6) with the forcing functions (P and Q) intact (i.e., the
nonhomogeneous Poisson’s equation form):

AEDC-TR-10-T-36

90 Statement A: Approved for public
release; distribution is unlimited.

 

 

2

2

P x, y

Q x, y





 

 

The Laplacians of the computational coordinates can now again be related to G(x) and G(y) by
examining Eqs. (B.11) and (B.12). (Note that at this point no assumptions were made as to
whether the equations were in the Laplace or Poisson form.)

2 2 2G(x) J x x        

2 2 2G(y) J y y        

Applying the forcing functions gives:

2

2

G(x) J x P x Q

G(y) J y P y Q
 

 

    

    

Thomas and Middlecoff (Ref. 18) proposed the following form for the forcing functions:

     

     

P x, y ,

Q x, y ,

   

   

   

   
 (B.14)

Using the Thomas-Middlecoff form (a.k.a. the  - form) gives:

   

   

2

2

G(x) J x x

G(y) J y y
 

 

   

   

          

          

Employing the definition of the G operator from Eq. (B.10) results in:

   

   

2

2

x 2 x x J x x

y 2 y y J y y
    

    

      

      

            

            

   

   

2 2

2 2

x 2 x x J x J x 0

y 2 y y J y J y 0
    

    

      

      

          

          
 (B.15)

Applying the dot product to the computational coordinates gives:

 

 

2 2
x x y y 2

2 2
x x y y 2

y y x x 1 y x
J J J J J

y y x x 1 y x
J J J J J

   

 

   

 

     

     

 
       

 
       

AEDC-TR-10-T-36

91
Statement A: Approved for public
release; distribution is unlimited.

This is now plugged into Eq. (B.15).

   

   

2 2 2 2

2 2 2 2

x 2 x x x y x x y x 0

y 2 y y y y x y y x 0

        

        

  

  

        

        

x 2 x x x x 0
y 2 y y y y 0
    

    

    

    

      

      

Rearranging the equations above results in the final form of the Winslow equations using forcing
functions in the Thomas-Middlecoff form:

   

   

x x 2 x x x 0

y y 2 y y y 0
    

    

  

  

    

    
 (B.16)

 where again:

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

AEDC-TR-10-T-36

92 Statement A: Approved for public
release; distribution is unlimited.

NOMENCLATURE

A Area

d Direction vector about which to reflect a point

dAB Metric length

dlat Computational space offset in the lateral direction

dn Computational space offset in the normal direction

D Drag

D* Target drag

1e First basis vector for transformed space (associated with normal spacing)

2e Second basis vector for transformed space (associated with lateral spacing)

F Vector field

g Geometric progression factor

h Triangle height

I Cost function

J Grid Jacobian: x y x y   

J Inverse Grid Jacobian: x y y x   

L Lift

L* Target lift

M Riemannian metric tensor

n Outward facing normal

n̂ Unit length normal vector

n̂  component of the unit normal vector in computational space

n̂  component of the unit normal vector in computational space

N Valence count; i.e., the number of connected neighboring nodes

PA Average location of interior nodes connected to a boundary node

PG Ghost point

PS Surface point

PS- Surface point before PS

PS+ Surface point after PS

r̂ Edge vector used for refinement

R Residual

T Temperature

AEDC-TR-10-T-36

93
Statement A: Approved for public
release; distribution is unlimited.

w11 Coefficient for x component of local node 1 (the central node) on a triangle
comprising a control volume

w21 Coefficient for x component of local node 1 (the central node) on a triangle
comprising a control volume

w12 Coefficient for x component of local node 2 on a triangle comprising a control
volume

w22 Coefficient for x component of local node 2 on a triangle comprising a control
volume

w13 Coefficient for x component of local node 3 on a triangle comprising a control
volume

w23 Coefficient for x component of local node 3 on a triangle comprising a control
volume

WD Drag coefficient

WL Lift coefficient

x Derivative of the physical coordinate x with respect the computational
coordinate 

x Derivative of the physical coordinate x with respect the computational
coordinate 

x Second derivative of x:
2 2x /  

x Second derivative of x: 2 2x /  

x Mixed second derivative of x: 2x /    

y Derivative of the physical coordinate y with respect the computational
coordinate 

y Derivative of the physical coordinate y with respect the computational
coordinate 

y Second derivative of y: 2 2y /  

y Second derivative of y: 2 2y /  

y Mixed second derivative of y: 2y /    

 Winslow coefficient: 2 2x y 

 Winslow coefficient: x x y y   

i Design variable

s Off-body spacing

AEDC-TR-10-T-36

94 Statement A: Approved for public
release; distribution is unlimited.

 Generic scalar, equipotential function

 Winslow coefficient: 2 2x y 

i Length of face i for a triangle

 Scaling matrix (Eigenvalues of Riemannian metric tensor)

 Second component of computational space

z Vorticity

 First component of computational space

C Point specifically defined to be on a unit circle in computational space

 Stream function

